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Instructions for the TREES program, v 1.3 
Jörgen Ripa, Lund, 2018 

Introduction 
The TREES program is a versatile tool for individual based simulations of large 
systems of evolving, competing species. It includes trait-based, eco-evolutionary 
feedbacks, full-blown genetics and evolving mating behavior. A main feature is the 
possibility to combine different modules to a large variety of models, which can be 
aimed at a multitude of scientific questions.  
TREES provides a versatile platform for the analysis of macroevolutionary 
mechanisms and patterns, as driven by individual interactions and microevolution. 
The program offers ample realism, detail and possibilities for advanced analysis. At 
the same time, it is easy to use. A new model design can be put together in minutes, 
using a simple script. The program is written in C++ for maximal performance. It is 
fully object-oriented, which makes it easy to extend for future needs. 
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Installing the software 
Installing is a basic procedure of downloading an executable.  

Mac: 
1. Follow this link: https://github.com/jorgenripa/TREES/releases and download 
TREES_1.3_Mac. 
 

2. Save the file in a directory where you will run simulations. Rename the file TREES 
for convenience. 

3. Open a Terminal window and change directory to the same directory as the TREES 
file. Use the cd command to change directory. Change the permissions of the TREES 
file like this: 
chmod +x TREES 

The program can now be run in a terminal window using 
 
./TREES test.txt 

The above command assumes there is a parameter file called test.txt in the same 
directory (an example can be found in the github repository: 
http://raw.githubusercontent.com/jorgenripa/TREES/master/test.txt ). 
The advanced user would know how to place the TREES executable in a more 
convenient place and create a symbolic link in the /usr/local/bin directory. This 
would make the somewhat awkward “./” unnecessary and make the TREES command 
available from anywhere. 

 
UNIX: 

1. Follow this link: https://github.com/jorgenripa/TREES/releases and download 
TREES_1.3_UNIX. 

 
2. Follow the Mac instructions above (starting at point 2). 

 
Windows: 

A Windows version is unfortunately not available for version 1.3 
 

Other: 
The complete code can be downloaded (‘Source code’) and compiled locally using 
gcc and the included build.sh script. 
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DISCLAIMER  
This program is open source under the GNU General Public License version 3 and is 
used at own risk. All modules have been tested, but there may still be lurking bugs. 
Some settings can require massive amounts of computer memory and possibly crash 
the computer. Other settings can produce extensive output and fill a hard-drive. There 
are no built-in safety functions to prevent such events. In other words, be careful. 
Make short, trial runs before launching large scale simulations. 
For further information please read the GNU GPL 3 at 
https://opensource.org/licenses/GPL-3.0 or in the text file distributed with the source 
code. 
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Model design  
The general model structure is shown in the figure below.  

 
Each individual has a set of traits and a position in space (one or more coordinates). 
Each trait is controlled by a set of loci in the individual’s genome. 
The traits and the position in space of an individual determines its fitness and controls 
its dispersal and mating behavior. Individual fitness and mating success dictate the 
genetic composition of the next generation. 

The content of each colored ellipse in the diagram above is controlled by the user. 
There are a number of modules that can be specified and combined to a large number 
of possible model configurations. The number of scientific questions that can be 
addressed is therefore also large.  

All modules can be combined with each other, with few exceptions. It is thus possible 
to change just one part of a model, for instance the genetics module or a mating 
module, but leave the rest intact. It is in this way easy to make informative 
comparisons and investigate underlying mechanisms. 

The model design is specified in a single text file, which is easy to read, edit and save 
for future reference. It can also be published as the exact definition of a particular 
model, making published results easy to reproduce. 

Program flow 

Each generation of the model comprises the following steps, in this order: 

1. Reproduction. Each individual chooses a mate from the local mating pool 
according to its preferences and produces F offspring. Each offspring inherits 
the genes of the two parents recombined in standard manner, and the spatial 
position of the mother (the choosing mate). All individuals are diploid and 
hermaphroditic.  

2. Generation shift. The parent generation is discarded, replaced by their 
offspring. 
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3. Dispersal. Each individual disperses with a given probability, which is a 
heritable trait. If no space module is defined, this step is skipped. 

4. Survival. The fitness of each individual is determined depending on its traits, 
local interactions, and its position in space. Survival is random for each 
individual, but the probability to survive is proportional to its fitness. 

5. Sampling. The population is sampled at fixed generation intervals. The 
samples are saved to a file at the end of the simulation. 

The steps above are controlled by a set of modules, set by the user. The different 
module types are described in detail below, but we will start with an example model.  

Building the model 
A model is constructed through a single text file, where all modules and parameters 
are specified. The general syntax is  
 
specifier : value  

where specifier can be either a parameter name or a module type. The colon 
between specifier and value is required, but the spaces on each side are optional. 
The whole file is composed of such [specifier : value] pairs, separated by a new 
line or a comma. Please pay attention to the order of parameter specifications, since 
changing the order usually results in an error. The program is indifferent to upper or 
lower case, except for trait names. 

The '#' character is used for comments and means the rest of a line is ignored. Tab 
characters and empty lines are ignored and can be added for structure. A sample 
model file is given below, with green-colored comments for clarity: 
 
#Simulation parameters: 
t_max : 4000 # the length of the simulation in generations 
sample_interval : 200 # the number of generations between each sample 
microsamples : means # some information saved every generation 
checkpoint_interval : 1000 # how often to save checkpoints 
keep_old_checkpoints : N # save all checkpoints, or only the latest? 
seed : R       # this can be a fixed integer, or R for Random. 
gene_tracking : N     # a Y/N variable  
gene_sampling : N     # a Y/N variable  
 
# Population parameters: 
F : 2 # Fecundity parameter 
n_0 : 100 # initial population size 
 
# Specify a Genetics module: 
Genetics : Continuous_Alleles, P_mutation : 1e-4 
 
# Specify traits: 
Trait : beak_size, dimensions: 1, loci_per_dim: 8, initial_value: 0 
 Transform: linear, offset: 1, scale: 0.05 
 
# Specify a Space module (optional) 
# no space in this case 
 
# Specify fitness module(s): 
Fitness : Resource_landscape 
 trait : beak_size # This is the evolving trait  
 r : 1 
 K_0 : 500 
 s_K : 1 
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 s_a : 0.5 
 s_space : 0 # spatial extent of competition  
 k_space : 0 # spatial gradient of resource optimum  
 
# Set the mating parameters: 
Mating_pool : Global 
Mating_trials : 100 # Trial matchings before a mating fails. 
 
# Add mating preference modules (optional) 
 

The parameter file above specifies a model of an evolving consumer feeding from a 
continuous (Gaussian) resource landscape. A one-dimensional trait beak_size 
controls the resource niche position of an individual. Mating is random. 

The first few lines define a few necessary model parameters, described below. Next, 
the Genetics module is specified. There are three types to choose from – 
Continuous_alleles, Diallelic and Omnigenic. 

After the Genetics module follows a list of one or several traits, in the example just 
one. Each trait is given a name (‘beak_size’ in the example). Each trait also has a 
number of dimensions and a number of loci per dimension. In the example, the trait 
beak_size is one-dimensional with 8 coding loci. Each trait is also followed by a 
(optional) list of transforms, which is part of the genotype-to-phenotype mapping.  

After the list of traits follows the optional specification of a Space module, defining 
the spatial structure and dispersal parameters. If no Space module is defined, a 
panmictic population is assumed. 

Next follows specifications of one or several Fitness modules, in arbitrary order. 
These modules determine the fitness of each individual, which in turn regulates 
individual survival. Fitness is applied in a multiplicative manner, i.e. the fitness of an 
individual is the product of the fitness values supplied by each fitness module. 

Lastly follows a few mating parameters, described in detail below. The example has 
random mating, for simplicity. 

To run the model above, save the specification as a text file, such as 
beak_size_model.txt, and run it from a command prompt by issuing the TREES 
command followed by the name of the parameter file: 
Mac / UNIX: 
 
 ./TREES beak_size_model.txt 
 

PC: 
 
TREES beak_size_model.txt 
 

The program output is a results file with extension .sim. It takes the same name as 
the parameter file, appended with _results and an index, defaulting to 1. The 
results file in this example is beak_size_model_results_1.sim. It can be 
imported to Matlab™ and plotted according to: 
 
>> beak_sim = read_sim('beak_size_model.txt', 1); 
>> plot_sim(beak_sim) 
>> colorbar 
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The figure shows a heat map of the abundances of phenotypes over time. It can be 
seen that the evolving trait beak_size first converges to zero, the point of maximal 
resource abundance, and next diversifies to a large continuous distribution. Mating is 
random, so speciation is not possible. 
Below follow detailed descriptions of all sections of the parameter file and all 
available modules. It is not necessary, and not even recommended, to read all 
descriptions before using the program. It is quite possible to instead cherry-pick the 
sections of one’s personal interest and refer back to this document when necessary.  

Simulation parameters 

t_max is simply the length of the simulation (in generations). This has to be an 
above-zero integer, but can be specified using a scientific format: 1.5e5 is equivalent 
to 150000. The same format is allowed for all integer parameters. 

sample_interval specifies how often the population will be sampled. All samples 
are saved in the output file. Frequent sampling gives high resolution output, but may 
generate very large data files. An advice is to first experiment with short simulations 
(a few hundred generations) to find an appropriate value. Remember to take possible 
increase in population size into account, since sample size scales with population size. 
The first generation (generation 0) is always sampled, followed by generations 
sample_interval, 2×sample_interval, and so on.  

microsamples are small samples taken every generation. There are four options 
available: 

microsamples : none (or just n) make no micro-samples 

microsamples : means (or just m) save the population means of all traits and 
spatial positions (if applicable) 

microsamples : vars (or just v) save means and variances of all traits and 
spatial positions (if applicable). 

microsamples : covars (or just c) save means, variances, and covariances of all 
traits and spatial positions (if applicable) 

Each microsample also contains a cpu-time, i.e. the cpu clock-time passed since the 
beginning of the simulation. 
Note: Trait constants (see below) are never included in microsamples. 
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checkpoint_interval sets the interval between checkpoints, which are more 
extensive samples. One can set checkpoint_interval to zero in order to prevent 
checkpoints entirely and save file size. At each checkpoint, all samples and 
checkpoints are saved to the results file. Without checkpoints, the results will not be 
saved until the whole simulation is completed. Checkpoints can be used to resume a 
simulation at that point in time. See the resume option below. 

keep_old_checkpoints is a Y/N variable. The value Yes (Y) means all checkpoints 
will be saved. The value No (N) means only the latest checkpoint will be saved. A No 
value will save disk space, but the simulation can only be resumed from the last 
checkpoint. 

seed determines the seed for the random number generation. If seed is set to 
‘Random’ (or just ‘R’), as in the example, a seed is generated from the system clock 
with nanosecond resolution. The seed value (an integer) is later stored in the output 
file, which makes it possible to repeat simulations, perhaps with a smaller 
sample_interval or a larger t_max. This is a handy way to analyze specific events 
in more detail or investigate an interesting evolutionary scenario on a longer time-
scale.  

gene_tracking takes values Y (Yes) or N (No). If this option is on (Yes), 
individual genes are tracked throughout the simulation. This is described in a separate 
chapter below. 

gene_sampling takes values Y or N, just like gene_tracking. If this option is on 
(Yes), the genotypes of all individuals will be sampled together with the phenotypes. 
This offers additional detail, such as the possibility to calculate FST-values, but may 
cause large output files. 

Population parameters and initialization 

Two population parameters have to be specified, in this order: 

F (for fecundity) sets the fixed number of offspring produced by each individual in 
the reproduction stage. F has to be an integer larger than 1 and is an important fitness 
component. See the section on fitness modules below.  

n_0 is the number of individuals of generation 0. 
Each simulation starts with n0 identical individuals with identical spatial coordinates. 
The genes are initiated as described below in the Genetics section, and the initial 
spatial position is specified in the Space section. The phenotypes are derived directly 
from the genotypes, as described in the Traits section. 
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Genetics 

Each individual has a its own diploid genome, inherited from both parents in a 
standard manner. Each locus recombines independently. The two alleles at each locus 
take values depending on the selected Genetics module: 

Diallelic 
This module implements an additive diallelic genetic model. Each locus has two 
possible alleles – a plus- and a minus-allele. The effect of each allele is ±1/2, i.e. the 
difference in allelic effects is 1. The phenotypic value of a trait (prior to transforms) is 
given by the sum of all allelic effects. As an example, consider a trait coded by 4 loci 
with the following genotype: [++, +–, –+, ++]. The corresponding phenotype equals 
6×1/2 – 2×1/2 = 2. The range of possible trait values is in this case between –4 and 
+4. In general, a trait coded by L loci can take values between –L and +L (before 
transforms). 
All traits listed in the model file are allocated the specified number of loci, all 
inherited independently.  

Mutations occur at a rate P_mutation per allele per generation and transforms a 
plus-allele to a minus-allele and vice versa. The phenotypic effect of a single mutation 
is thus ±1. P_mutation is the single parameter of this module and has to be given a 
value. Example syntax: 
 
Genetics: Diallelic, P_mutation: 1e-5  

Continuous_Alleles  
This module implements an additive continuum-of-alleles genetic model. Allelic 
effects can take any value. Mutations change the allelic effect according to a 
symmetric double exponential (Laplace) distribution with standard deviation 1, 
comparable to the Diallelic module. 

In all other respects, the Continuous_Alleles module behaves as the Diallelic 
module. Example syntax: 
 
Genetics: Continuous_Alleles, P_mutation: 1e-5  

Omnigenetic 
This module generates maximal pleiotropy, in the sense that all genes affect all traits. 
An n´L matrix, B, that maps the effects of L loci onto n traits (or trait components) is 
generated at simulation initialization. The elements of B are drawn independently 
from a double exponential distribution and standardized such that each row of B has a 
squared vector length equal to loci_per_dim / L, where loci_per_dim is set for 
each trait separately (see below). This standardization assures that an increase in L 
does not change the mutational variance added each generation, and the mutational 
increase of each trait remains relatively the same, compared to the other genetic 
modules. 

The total number of loci, L, is set by the variable Loci in the module definition: 
 
Genetics: Omnigenetic, P_mutation: 1e-6, Loci : 50 
 

Choosing a large value for Loci (compared to the number of traits) leaves many 
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degrees of freedom for evolution. A smaller value puts more constraints to 
evolutionary change. Another way of constraining evolution is to define a number of 
traits with strong stabilizing selection (see Traits and Fitness modules below). 
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Traits 

The user specifies the number of heritable traits in the model. The traits are 
incorporated in the Fitness, Space and Mating_preference modules as 
parameters. 
The traits are specified one after the other in the model file. Each trait has a name and 
three parameters – dimensions, loci_per_dim, and initial_value. Example: 
 
Trait : A, dimensions : 3, loci_per_dim : 5, initial_value = 0 

Trait names have to be unique, but can be any sequence of letters, digits and 
underscores, preferably chosen to describe the nature of the trait (such as ‘size’ or 
‘color’). Note that the trait name is the only case when the difference between upper 
and lower case is acknowledged by the program. It is thus possible, but not 
recommended, to have two separate traits labeled a and A.  

The dimensions variable sets the number of dimensions. A value of 1 corresponds 
to a simple, real-valued trait. Higher integer values of dimensions generates vector-
valued traits.  

loci_per_dim sets the number of appointed loci per dimension. The example above 
generates a three-dimensional trait called A coded by in total 3×5 = 15 loci. 

Finally, initial_value sets the starting value for the trait, given to all individuals 
in generation 0, in all dimensions. The starting population consists of identical, 
completely homozygote, individuals. Each trait is set to its initial_value, but the 
implementation varies between the genetics modules. 

In the Continuous_Alleles genetics module, the first locus is set to be 
homozygote with allelic effects equal to initial_value / 2. All other loci have 
starting value 0.  

In the Diallelic module, there are some constraints to the possible phenotypes. The 
program tries to find a homozygote genotype that matches the initial_value, and 
outputs an error if it fails. For instance, consider the case with just two loci 
(loci_per_dim = 2). The possible homozygote genotypes are [+ + / + +],  [+ + / – 
–], [– – / + +], and [– – / – –], corresponding to the phenotypes 2, 0, 0 and –2 (each 
allele contributes +/–0.5). The only allowed values of initial_value are thus 2, 0 
and –2. In general the possible values range from –loci_per_dim to 
+loci_per_dim in steps of 2.  

In the Omnigenic module, all loci are initiated homozygous at value 0. The initial 
value of each trait is implemented as a constant added to the trait value in the 
genotype-phenotype mapping (prior to any transforms). 

Constant Traits 

It is possible to define constant, non-evolving, traits. This is useful if a trait can 
evolve in some simulations, but not in all. It is then sufficient to change the definition 
of the trait itself, without changing its usage.  
The syntax to define a constant trait is: 
 
Trait_constant : X, dimensions : 3, initial_value = 4.5  

The only difference to an ordinary trait is the keyword Trait_constant and that 
the parameter loci_per_dim is missing. The trait is fixed at the value set by 
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initial_value, in all dimensions. A constant trait is not saved in population 
samples. In all other respects, a constant trait functions as an ordinary trait. 

Transforms 

The genotype-to-phenotype mapping of each trait is completed by a (possibly empty) 
list of transforms. The transforms are applied in the order they are listed. Multi-
dimensional traits are transformed one dimension at a time. Note that the 
initial_value parameter applies to the untransformed trait. 

Linear transform 

The linear transform is perhaps the most common. It transforms a phenotypic value 
x according to 

 
The linear transform is, among other things, used to set the size of mutations. By 
default, mutations have a standard variation of 1. A linear transform can rescale the 
phenotype such that mutations have an effect of arbitrary size. For example 
 
Trait : color, dimensions : 3, loci_per_dim : 4, initial_value : 0 
 Transform : linear, offset : 1, scale : 0.01 

introduces a three-dimensional trait color with mutational effects of standard 
deviation 0.01. The offset parameter (here set to 1) determines the initial phenotype 
since the untransformed phenotypes start at zero (initial_value = 0). 

Abs transform 

The abs transform removes the sign of a phenotypic value. This may be useful to 
avoid negative values. There are no parameters. Example syntax: 
 
Trait : size, dimensions : 1, loci_per_dim : 8, initial_value : 1 
 Transform : abs 

Range transform 

The range transform conveniently transforms a trait to a given range [min, max]. 
This only applies to models with a Diallelic genetics module. It is implemented as 
a linear transform. Example syntax: 
 
Trait : size, dimensions : 1, loci_per_dim : 8, initial_value : 1 
 Transform : range, min : -10, max : 10 

In the above example the trait size will be rescaled such that the lowest possible trait 
value (all alleles= –1/2) is -10 and the maximal trait value (all alleles = +1/2) is 10. 

Logistic transform 

The logistic transform is a more elaborate way of putting boundaries to 
phenotypic values. It has two parameters, min and max, which set the lower and 
upper boundaries, respectively. The functional relationship is given by 

𝑦 = 𝑚𝑖𝑛 + 𝑅/(1 + 𝑒,
-.
/ ) , 

where R = max – min. The function is scaled such that the slope at x = 0 is equal to 1. 
This means that mutational effects near x = 0 are in principle unaffected, but as x 
grows to large positive or negative numbers the transformed mutational effects 

 y = offset + scale ⋅ x
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become increasingly smaller. Example: 
 
Trait : size, dimensions : 1, loci_per_dim : 8, initial_value : 0 
 Transform : logistic, min : 1, max : 3 

 

Normal_Deviate transform 

This adds a normally distributed random deviate with zero mean to the phenotypic 
value, independently to all individuals. It can be used to introduce environmental 
noise to phenotypes, reducing the heritability. The single parameter is the standard 
deviation, SD. Example: 
 
Trait : size, dimensions : 1, loci_per_dim : 8, initial_value : 5 
 Transform : Normal_Deviate, SD : 0.5 

Combined transforms 

Finally, here follows a few examples of combined transforms. 
 
Trait : size, dimensions : 1, loci_per_dim : 8, initial_value : 0 
 Transform : linear, offset : 0, scale : 0.01 
 Transform : logistic, min : 0, max : 2 

Description: A trait size with mutational size 0.01, bounded to the interval (0, 2). 
The initial value can be calculated as the combined transform of the initial 
untransformed value 0. The first linear transform does not alter it (offset is 0), but 
the logistic transform maps a zero to the interval midpoint, which in this case is 1.  
  

x
-2 -1 0 1 2

0

1

2

3

4

min

max
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Space 

Following the list of traits there is the possibility to specify a Space module. It can 
also be left out, which results in a totally panmictic population (complete mixing). 
The space module defines the structure of space, but also controls the dispersal 
behavior of individuals. 
Note that some fitness modules (below) require a particular space module. 

Discrete Space 
Space is implemented as a suite of discrete patches with this module. The position of 
an individual is an integer value from 0 to (size – 1), where size is an integer 
parameter > 0. The position can also be multi-dimensional, with one integer value per 
dimension. All individuals are initiated in the same place, specified by the variable 
initial_position (applied to all dimensions). 

Each individual disperses independently with probability P_disperse, which takes 
values from a heritable trait. The trait has to be one-dimensional and specified in the 
preceding traits section, as described above. If the space module has more than one 
dimension, the direction (dimension) of dispersal is chosen at random.  

There are three dispersal behaviors, or types to choose from: 

• Neighbor (or just N) : Move to one of the two neighboring patches (position 
+/– 1). 

• Global (or just G): Choose a patch randomly. 
• Distance (or just D): Disperse a distance +/–X, where X is drawn from a 

geometric distribution with mean dispersal_distance. 
There are also three boundary conditions to choose from: 

• Reflective (R): dispersal across the boundaries is simply reflected 
• Circular (C): classic circular boundaries 
• Absorbing (A): individuals dispersing across the boundaries are removed 

Note: The Circular boundary condition only applies to dispersal. Competition and 
mate choice do not occur across boundaries. 

Syntax examples: 
 
Trait_constant : PD, dimensions : 1, initial_value : 1e-3 
 
… 
 
Space : Discrete 
size : 2             # number of patches 
dimensions : 1       # number of dimensions 
P_disperse : PD # dispersal probability, per individual 
dispersal_type : Neighbor # one of Neighbor, Global, Distance 
 #dispersal_distance : 1 # required if dispersal_type : Distance 
boundary : Circular  # one of: Reflective, Circular, Absorbing  
initial_position : 1  # the initial patch number of all individuals 
 

A briefer but equivalent specification reads: 
 
Space : Discrete, size : 2, dimensions : 1, P_disperse : PD 
  dispersal_type : N, boundary : C, initial_position : 1 
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Here’s a two-dimensional case, a 5x5 grid, and a specified dispersal distance: 
 
Space : Discrete, size : 5, dimensions : 2, P_disperse : PD  
 dispersal_type : D, dispersal_distance : 1.5  
 boundary : A  
 initial_position : 1   

The first example has a constant P_disperse trait, but it can also evolve, if desired. 
A couple of trait transforms are then useful to rescale the size of mutations and keep 
the trait value between 0 and 1: 
 
Trait : PD, dimensions : 1, loci_per_dim : 20, initial_value : -10 
 Transform : linear, offset : 0, scale : 0.05 
 Transform : logistic, min : 0, max : 1 
 
… 
 
Space : Discrete, size : 2, dimensions : 1, P_disperse : PD 
  dispersal_type : N, boundary : C, initial_position : 1 
 

Continuous Space 

This is a continuous space implementation, but otherwise with much the same 
functionality as the Discrete module. An individual’s spatial coordinate is a real 
number in the interval 0 ≤ position < size, one coordinate per dimension. The 
dispersal distance is drawn from an exponential distribution with mean 
dispersal_distance. The dispersal direction is drawn from a circular / spherical 
distribution, depending on dimensionality. 

Syntax example: 
 
Trait_constant : PD, dimensions : 1, initial_value : 1e-3 
 
… 
 
Space : Continuous 
size : 100 # the size of the world in each dimension 
dimensions : 1 # number of dimensions 
P_disperse : PD # dispersal probability, per individual 
dispersal_distance : 1 # average distance (exponential distribution) 
boundary : Reflective # one of: Reflective, Circular, Absorbing  
initial_position : 50 # initial position of all individuals 
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Fitness 

Natural selection is implemented through differentiated survival of individuals. The 
survival stage consists of two steps: First, the fitness of all individuals is calculated by 
multiplying the fitness given by all Fitness modules. Second, each individual survives 
with a probability equal to its fitness divided by F (the fecundity). In this way, the 
total fitness is always survival multiplied with fecundity, as it should in a model with 
non-overlapping generations.  

The survival probability (fitness / F) is truncated above at 1, which means that the 
realized fitness is never larger than F. A large value of F increases the demographic 
stochasticity and puts less limits to individual fitness. It also means a large number of 
offspring are produced each generation which may take time. An F-value of 2 means 
any individual fitness can never exceed 2, but may save computation time. Recall that 
the population is normally close to ecological equilibrium, which means most fitness-
values are normally close to 1. 

There are a number of fitness modules to choose from, and they can all be combined 
with each other. 

Stabilizing_selection 

This module puts a trait under stabilizing selection towards a given optimal_value. 
It can be used to keep trait evolution within reasonable bounds, to introduce a source 
of deleterious mutations (it the trait is otherwise neutral), or a mechanism for evolving 
incompatibilities. Fitness is calculated as  

  

where z is the trait under selection, z* is the optimal value, and the sum is across the 
dimensions of z. The positive parameters c (cost_coefficient) and e 
(cost_exponent) determine the shape and strength of the selection.  
Syntax example: 
 
Fitness : Stabilizing_selection 
trait : Z # the name of the trait under selection 
optimal_value : 1 
cost_coefficient : 0.5 
cost_exponent : 2 # a value 2 gives a quadratic cost function 

If the trait under stabilizing selection has no other function it is expected to quickly 
evolve to the optimal_value and stay there, save for drift. Disadvantageous 
mutations may become fixed by drift, but are expected to be canceled out by 
compensating mutations, possibly at other loci coding for the same trait. In this way, 
two isolated populations may evolve unique genetic solution to the same optimal 
phenotype, corresponding to co-adapted gene complexes. If the two populations do 
interbreed, the F2 offspring will vary extensively in phenotype and have low average 
fitness. It is in this way possible to introduce a mechanism of evolving genetic 
incompatibilities. 

Resource_landscape 
This module is based on the well-studied model of a continuous resource landscape, 
modeled as a Gaussian carrying capacity function. An evolving trait dictates the 
amount of resources available to an individual. The peak of the resource landscape, 

  
f = exp(−c zd − z* e

d∑ )
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i.e. the maximal amount of available resources, corresponds to a trait value 𝑘2𝑥4, 
where 𝑥4 is an individual’s position in space in the first spatial dimension and 𝑘2 is a 
spatial gradient parameter. If 𝑘2 is zero, the peak of the resource landscape always 
corresponds to a trait value of zero. If 𝑘2 is non-zero, the local resource peak   
Competition between individuals depends on their proximity in trait space as well as 
actual space (if specified). The fitness of individual i is given by 

𝑓6 = 1 + 𝑟
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(truncated below at zero). The sum over j is taken across all individuals, the sums 
over d are across the dimensions of trait u, and the sum over p is across all dimensions 
of space (if any).  
The fecundity parameter F is included to rescale the density dependence such that the 
equilibrium adult, post survival selection, population is controlled by K0 and 
independent of F. 

The parameters r, σa , K0, and σK , 𝜎2 (s_space) and 𝑘2 (k_space)  have to be 
specified in the syntax: 
 
Fitness : Resource_landscape 
trait : beak_size # for example 
r : 1 
K_0 : 100 
s_K : 1 
s_a : 0.4 
s_space : 1 # spatial extent of competition (all spatial dimensions) 
k_space : 0 # spatial gradient of resource optimum  
 

Density_dependence 
This module introduces density dependence localized in space. Individual fitness is 
given by 
 

𝑓6 = exp
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where the sum is across all individuals and 𝑑6DG  is the squared euclidian distance 
between individuals i and j, 𝑑6D = ∑ B𝑥6K − 𝑥DKF

G
K  (xip is the position of individual i in 

spatial dimension p). Syntax: 
 
Fitness : Density_dependence 
r : 1 
K : 500 
s_space : 2 # s_s 
 

The parameter 𝜎2 (s_space) controls the spatial extent of competitive interactions. A 
large 𝜎2 implies long-range competition and smaller local population sizes. The total 
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population also scales directly with the carrying capacity parameter K. 
The fecundity parameter F is included to rescale the density dependence such that the 
equilibrium adult, post survival selection, population is controlled by K and 
independent of F. 

Note: In discrete space it is possible to set 𝜎2 = 0, implying within-patch competition 
only. It will also speed up computation times considerably. A value 𝜎2 > 0  implies at 
least some amount of competition between individuals in different patches and much 
longer computation times. 

Discrete_resources 

This is a model of 𝑛b discrete resources with explicit (fast) dynamics according to a 
chemostat model. Individual consumption rate is controlled by an ecological trait. The 
module is only available for discrete space models or models without space.  

Resource dynamics of resource j within a single patch occur on a fast time-scale, 
following 

𝑑𝑅D
𝑑𝑡 = K − 𝑅D −e 𝑎6D𝑅D

D
, 𝑗 = 0. . (𝑛b − 1), 

where the sum is across all individuals in the patch. Notice that the index of the first 
resource is 0. The parameter K is a scaling parameter, setting the overall size of the 
system. The attack rate of individual j on resource i is  

𝑎6D =
𝑎O
𝐾 𝑒

,
BiZ,6F

[

Gjk[  

where uj is the assigned (one-dimensional) trait, a0 dictates the maximal attack rate, 
and σa is the niche-width of the consumer. A trait value 𝑢 = 𝑖 makes an individual 
specialized on resource i.  

The equilibrium resource abundance evaluates to 

𝑅6∗ =
𝐾

1 + ∑ 𝑎6DD /𝐹	. 
 

The fecundity parameter F is included to rescale the density dependence such that the 
equilibrium adult, post survival selection, population is controlled by K and 
independent of F. 

The fitness of an individual is evaluated in discrete time, assuming all resources are at 
equilibrium, according to 

𝑓D = 1 +e 𝑎6D𝑅6∗
6

− 𝑐o6p	,  

where cmin is the minimal amount of resources required for an individual to replace 
itself.  

The equilibrium population size of a resource specialist feeding on a single resource 
in a single patch can be calculated to 

𝑁∗ = 𝐾 Q
1
𝑐o6p

−
1
𝑎O
S, 

which confirms the scaling property of K and sets bounds on 𝑐o6p and 𝑎O for 
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population persistence. 
Syntax example: 
 
Fitness : Discrete_resources 
trait : X # any previously specified trait 
n_R : 3 # the number of resources 
K : 2000 # scaling constant  
a_0 : 4 # maximal attack rate. Too high values leads to unstable 
population dynamics 
s_a : 0.6 # consumer niche width 
c_min : 1 # minimal intake rate for self-replacement 
 

Spatial_gradient 

This module applies selection towards an optimal phenotype, that varies linearly in 
space. It operates only along the first spatial dimension and the first dimension of the 
associated trait. The fitness function is 

𝑓6 = 𝑒
,
BrYst].YF

[

[uv[ , 
 

where ui is the trait value and xi is the position of individual i, respectively. The 
parameter σs (s_selection) controls the strength of selection and ks (k_space) is 
the steepness of the spatial gradient.  

This module works in both discrete and continuous space. The discrete space position 
is simply the index of the patch (0, 1, 2, …). 

Syntax example: 
 
Fitness : Spatial_gradient 
trait : B # trait for local adaptation 
k_space : 1 # steepness of spatial gradient 
s_selection : 1 # spatial niche width 

Catastrophes 

The Catastrophes module introduces global mortality events at random intervals. 
It has two parameters:  
P_catastrophe is the probability there will be a catastrophe in any given year.  
P_survive is the probability that an individual will survive a catastrophe. 
Syntax example: 
 
Fitness : Catastrophes 
P_catastrophe : 0.001  
P_survive : 0.01  
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Mating 

Each reproduction event starts with mate selection. Each individual chooses a mate 
from the assigned mating pool according to its mating preference modules. More 
explicitly, a choosing individual is presented candidate mates randomly picked from 
the specified mating pool. It will accept a mate with a probability set by its mating 
preferences. If the candidate mate is rejected, a new candidate is picked randomly 
(with replacement), and so on until a mate is accepted or a maximal number of 
mating_trials candidates have been rejected. If all candidates are rejected, the 
choosing individual will not reproduce unless it is chosen as a mate by another 
individual.  
The mating section of a model description includes at least two parameters 
 
Mating_pool : [one of Selfing, Local, Global] 
Mating_trials : [an integer > 0] 

followed by an optional list of mating_preference modules. 

The Mating_pool can be one of three choices:  

Selfing: This is the simplest mating pool, and quite self-explanatory (non pun 
intended…). All individuals mate with themselves, but the mechanics of gamete 
formation, recombination and zygote formation still operate. No parameters are 
required. This module invalidates all specified mating_preference modules. 
Syntax: 
 
Mating_pool : Selfing 
 

Local: The random pick of candidate mates is weighted depending on their 
proximity in space, using a Gaussian weight function with width parameter σs 
(s_space). The weight of a partner at Euclidian distance d in space is exp w− E[

G\][
x. 

This option requires a specification of the extra parameter 𝜎2. Syntax example: 
 
Mating_pool : Local, s_space : 0.5 

If space is discrete and 𝜎2 = 0 (s_space : 0), mates are chosen randomly from the 
local patch, which is computationally more efficient than the general case. 

Global: A global mating pool means that mating candidates are chosen randomly 
from the entire population, irrespective of proximity in space. Syntax: 
 
Mating_pool : Global 

The Global and Local mating pools are equivalent if no spatial module is defined. 

The Mating_pool and Mating_trials parameters are followed by an optional list 
of Mating_preference modules. If more than one module is specified, they are 
applied in the order they are specified. The modules are multiplicative, such that the 
weight of any given mating candidate is the product of weights from all 
Mating_preference modules. The actual mate is then chosen randomly according 
to the combined weights. Selfing is allowed, i.e. an individual may choose itself as a 
mate. 

There is currently only one type of Mating_preference module to choose from, 
the target_selection module, but it is highly versatile. The general idea (from 
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Thibert-Plante & Gavrilets 2013) is that each individual has a heritable display trait 
and a heritable preference trait. Mate selection is based on matching the preference 
with the display. The target and preference traits may be the same trait, which 
generates assortative mating – individuals tend to choose mates similar in phenotype 
to themselves. A third trait regulates the strength of partner selection, i.e. the 
choosiness. A negative strength trait implies disassortative mating, i.e. that mates 
dissimilar in phenotype are preferred. A strength of zero implies random mating. All 
three traits (display, preference, strength) can be multi-dimensional, but must have 
the same number of dimensions. 
If we label the target trait x, the preference trait y, and the strength trait c, the 
probability that individual i will accept individual j is  

𝑃6D = min Q1, 𝑒𝑥𝑝 Q−e 𝑝E
E

SS , 

where the sum is across the dimensions of x, y and c and  

𝑝E = 𝑐6EB𝑥DE − 𝑦6EF
G
, 𝑐6E > 0 

𝑝E = max Q0, 𝑐6E wB𝑥DE − 𝑦6EF
G
− 𝛥GxS , 𝑐6E < 0. 

The additional parameter 𝛥 (Disassortative_limit) is only used if there is 
disassortative mating, i.e. if the strength (c) is negative. It sets the phenotypic distance 
beyond which all mates are accepted. A few example preference functions are drawn 
below. 

 
A couple of examples, that also illustrate the syntax, are given below. 
 
Mating_preference : Target_selection 
 Display : beak_size  
 Preference : beak_size 
 Strength : C  
 Disassortative_limit : 1 

If beak_size is associated with a fitness module, the above could be a magic trait 
model. The trait C could be an evolving trait or a constant trait.  
Here’s a more complete example with independently evolving target and preference 
traits, as well as an evolving strength: 
 
Trait : Color  
 dimensions : 3 
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 loci_per_dim : 10 
 initial_value : 0 
Trait : Color_Preference 
 dimensions : 3 
 loci_per_dim : 10 
 initial_value : 0 
Trait : Color_Choosiness 
 dimensions : 3 
 loci_per_dim : 10 
 initial_value : 0 
 
# other traits / modules ... 
 
Mating_pool : Local  
 s_space : 1 # set this to 0 for within-patch mating 
Mating_trials : 1000  
 
Mating_preference : Target_selection 
 Display : Color  
 Preference : Color_Preference 
 Strength : Color_Choosiness  
 Disassortative_limit : 1 

The above creates a three-dimensional ‘color’ trait with associated preference and 
choosiness traits. If none of the traits is associated with a Fitness module, this is a 
pure sexual selection model.  

More than one Mating_preference module can be specified. The probability to 
choose a mate is then simply the product of all probabilities generated by the different 
modules. A fixed strength of assortative mating on one trait can in this way be 
combined with sexual selection on another trait. Alternatively, assortativeness can 
evolve in parallel with sexual selection (cf. Thibert-Plante & Gavrilets 2013). The two 
examples above can thus be combined in the same model: 
 
Mating_preference : Target_selection 
 Display : beak_size  
 Preference : beak_size 
 Strength : C  
 Disassortative_limit : 1 
 
Mating_preference : Target_selection 
 Target : Color  
 Preference : Color_Preference 
 Strength : Color_Choosiness  
 Disassortative_limit : 1 
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Running simulations 
Simulations are typically issued from a command prompt. The TREES executable 
should be in the search path or the current directory. The parameter file should be in 
the current directory, which is also where all output is saved. The command is simply 
TREES or ./TREES (see installation above) followed by the name of the parameter 
file: 
 
TREES myModel.txt 

Optionally, two integers can be added to specify indices of repeated simulations: 
 
TREES myModel.txt 11 20 

The above command will run 10 replicate simulations which will be given indices 
from 11 to 20. The output of each replicate is saved in its separate output file. The file 
name consists of the name of the parameter file, appended with ‘_results_’, the index 
of the simulation, and an extension ‘.sim’. The last example above would generate 
output files myModel_results_11.sim, myModel_results_12.sim, 
myModel_results_13.sim, etc. If no indices are specified, as in the first example, the 
single simulation is given index 1. 

The TREES command also takes an option -v (‘verbose’) which gives extra output 
during the simulation run, including current population size at each sampling point as 
well as estimated finishing time. Example: 
 
TREES -v test.txt 

It is wise to make short test-runs, with perhaps a few hundred generations, to get a 
feeling for the time required. Remember that simulation time increases as the number 
of individuals increases, often at a quadratic rate. If total population size is expected 
to increase by a factor 10, the simulation may be 100 times slower towards the end! A 
simulation can at any point be interrupted with Ctrl+C. 
It is also wise to let the name of the parameter file reflect the parameter values that 
may vary between simulations. This is to avoid over-writing earlier results, but also to 
assist sorting output files. Alternatively, different settings can be run in different 
directories. 

Output 

Each simulation is saved in a separate file with a hopefully unique name. The file 
name starts with the name of parameter file, followed by ‘_results_’, the index of the 
replicate, and the extension ‘.sim’. For example, the command 
 
TREES Model8.txt 1 2 

would generate two output files: ‘Model8_results_1.sim’ and 
‘Model8_results_2.sim’. 

File format 
The output files are in binary format. Please refer to the Plotting and Analysis section 
below if all you need to do is analyzing results.  

All integers are stored as 32 bit, unless otherwise specified, all floats are single 
precision (32 bit)). The sequence of data is: 



24 

1. File version (integer) 
2. Simulation seed (64 bit unsigned integer) 
3. A complete copy of the parameter file text, ended by a zero byte. 
4. The number of loci (integer) 
5. The number of microsamples (integer equal to 0 or the number of generations) 
6. All micro-samples, in chronological order, if any (see below). 
7. The number of samples (integer) 
8. All samples in chronological order (see below) 
9. Gene tracking data, if Gene_tracking is activated (see Gene Tracking below) 
10. Checkpoints, if applicable. 

Each micro-sample is structured as: 
1. The microsample option, a single character, one of {‘m’, ‘v’, ‘c’}. 
2. The population generation (64 bit integer) 
3. The cpu-time of the sample (floating point double, 8 bytes) 
4. The population size (integer) 
5. The actual data, depending on the chosen option (point 1): 

m: a vector (see below) of means, one per trait dimension and spatial 
dimension. Trait means are given in the order the traits are defined in the 
parameter file. 
v: first a vector of means (as above), followed by a vector of variances, 
one per trait dimension and spatial dimension. 
c: first a vector of means, followed by a vector of covariances, one per 
pair of trait dimension and spatial dimension. These come in the order 
(1,1), (1,2),…(1,n), (2,2), (2,3),…,(n,n), where n is the total number of 
trait and space dimensions. 
Each vector above is stored as a starting integer giving the number of 
elements, followed by the actual data as sequence of floats. 

Each sample is structured as: 

1. The generation number, starting at 0 (64 bit integer) 
2. Population size (integer) 
3. Complete genomes of all individuals, if Gene_sampling is on. For the Diallelic 

module, the alleles are saved as bits (mapping -1/2 to 0 and +1/2 to 1). For the 
Continuous_alleles model, these are saved as. The first half genome is saved 
for each individual before the second, analogous, half is saved for each 
individual. 

4. Gene tracking sample, if Gene_tracking is activated (see Gene Tracking 
below). 

5. All traits, one at a time. Each traits is saved simply as the phenotypic values of 
all individuals (floats). Multivariate traits are saved with all dimensions 
together ((individual 1, dimension 1), (individual 1, dimension 2), (individual 
2, dimension 1), and so on). 

6. Spatial information, if applicable. The spatial position (float) is saved 
analogous to a trait. 
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Gene Tracking 

The program can keep track of all genes (or, more correctly, alleles) and their 
descendants. This is activated by setting the parameter gene_tracking to ‘Y’ or 
‘Yes’ (see ‘Simulation parameters’ above). Gene tracking makes it possible to draw 
separate phylogenies of all genes present in the final population, or to calculate 
coalescence times of separate loci. The gene tracking data is continuously pruned of 
extinct, non-sampled, lineages to save computer memory and file size. 

Each gene is given a unique ID number at its first appearance, which is either in 
generation 0 or following a mutation. The ID is stored in a table, together with the 
gene’s phenotypic effect, the ID of the parent and the time of birth (in generations). 
There is one separate table per locus.  

The gene tracking data is stored at the end of an output file as a sequence of lists, one 
list per locus. Each list contains 

1. List length (integer) 
2. Each gene in the list, containing: 

a. id: a unique number (64 bit integer) 
b. parent: the parent id (64 bit integer) 
c. birth: the generation of first appearance (64 bit integer) 
d. death: the generation of last appearance (64 bit integer) 
e. effect: its genetic effect (float) 
f. children: the number of (sampled) descendants (integer) 
g. child_list: all id:s (if any) of the immediate descendants (64 bit 

integers) 

The first gene in the list is the root, from which all other descend. It has id = 1 and 
parent = 0. The generation of last appearance is constrained to sample events. It is 
only during sampling that gene presence/absence is checked in the population. 
All population samples also contain gene tracking data. It occurs at the end of the 
sample, analogous in structure to the Gene_sampling data but with all entries 64 bit 
integers. This is simply the id:s of all genes currently present in the population. 

Resuming simulations 

The resume feature makes it possible to resume a simulation at saved checkpoints. 
This feature can be used to 

• Continue a simulation from the last saved generation. 
• Re-run a part of a simulation with increased sampling frequency 
• Resume a simulation at a particular point in time with modified fitness or mating 

modules. 
Syntax: 
 
TREES -resume parameter_file.txt results_file.sim starting_generation
 new_results_file.sim 

Example: 
TREES -resume beak_size_model2.txt  beak_size_model_results_1.sim 
 2000  beak_size_model2_results_0.sim 

The parameter file does not have to be the same parameter file as was used to 
generate the results in the first place. You can thus re-run a simulation from any 
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checkpoint with a new model specification as long as the genetics and space modules 
and all traits are the same. Any fitness or mating modules can be altered or removed 
and new ones can be added (as long as they use the available traits). 

The starting_generation parameter is optional. If it is not specified, or set to -1, 
TREES will resume from the last saved checkpoint. 

The new_results_file.sim is also optional. By default, TREES will save results 
to the specified results_file.sim, over-writing whatever was stored before. 

The resumed simulation will continue until t_max generations, as specified in 
parameter_file.txt.  
Resuming a simulation with the same model description will keep the random number 
generation consistent with the original seed. The result should thus be exactly the 
same as the first run. This can be used to re-run a particular part of a simulation with 
increased sampling frequency, for instance. 

The -resume option can be combined with the -v (verbose) option, in any order. 
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Plotting and analysis (Matlab) 
TREES includes a toolbox of Matlab functions for reading and analyzing simulation 
data. All functions described below can be found in the TREES_Matlab folder at 
github. Download the files to a suitable directory, preferably on your Matlab path. 

Using these functions efficiently requires some basic knowledge of Matlab, but 
several examples are provided below. 

read_sim 

The basic Matlab program to read sim-files is read_sim.m. It takes two parameters – 
the name of the parameter file (not the results file) and the index of the simulation. 
The output is a struct containing all available information about the simulations. As 
an example, consider a parameter file m1.txt like this: 
 
——————————————————————————————————————————————————————————————————— 
#Simulation parameters: 
t_max : 5000, sample_interval : 100 
microsamples : n 
checkpoint_interval : 0, keep_old_checkpoints : N 
seed : R, gene_tracking : N, gene_sampling : N    
# Population parameters 
F : 2, n_0 : 100 
 
# Genetics 
Genetics : Continuous_Alleles, P_mutation : 1e-4 
 
# Traits 
Trait : X, dimensions: 1, loci_per_dim: 10, initial_value: -20 
 Transform: linear, offset: 0, scale: 0.05 
 
# Fitness 
Fitness : Stabilizing_selection, trait: X 
 optimal_value : 0  
 cost_coefficient : 0.1 
 cost_exponent : 2 
Fitness : Density_dependence, r : 1, K : 1000, s_space : 0 
 
# Mating 
Mating_pool : Global 
Mating_trials : 100  
——————————————————————————————————————————————————————————————————— 

The model has a single trait X coded by 10 continuous alleles loci and subject to 
stabilizing selection towards zero. Density dependence is added to control population 
size. Some sort of density dependence has to be included. Fitness will otherwise never 
exceed 1 and the population will rapidly go extinct. 

On a standard computer, such a short simulation runs in a few of seconds. The 
simulation can be run using 
 
TREES m1.txt 1  

which generates an output file ‘m1_results_1.sim’ which can be read into Matlab 
using 
 
>> sim1 = read_sim('m1.txt',1) 

All data is stored in the struct sim1: 
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>> sim1 
 
sim1 =  
 
  struct with fields: 
 
                    name: 'm1' 
                    seed: 1579790779407228 
                   t_max: 5000 
         sample_interval: 100 
     microsamples_option: 'n' 
     checkpoint_interval: 0 
    keep_old_checkpoints: 'N' 
           gene_tracking: 0 
           gene_sampling: 0 
                       F: 2 
                     n_0: 100 
                Genetics: [1×1 struct] 
                  Traits: [1×1 struct] 
                   Space: [1×1 struct] 
                 Fitness: {[1×1 struct]  [1×1 struct]} 
                  Mating: [1×1 struct] 
                    loci: 10 
            microsamples: [] 
            sample_count: 51 
                 samples: [1×51 struct] 
                   stats: [1×1 struct] 

All modules are included in the struct, including all parameters. The Traits field is a 
vector of structs, one per trait (only one in this case). Each trait struct contains the 
parameters of that specific trait: 
 
>> sim1.Traits 
 
ans =  
 
            name: 'X' 
             dims: 1 
     loci_per_dim: 10 
    initial_value: -20 
       transforms: {[1x1 struct]} 

which in turn contains a list of the transforms associated with that trait. In a similar 
manner, all modules are represented in the struct. 

All population samples are contained in the samples field, which is a vector of 
structs, one per sample. A sample of this example model looks like this: 
 
>> sim1.samples(1) 
 
ans =  
 
           gen: 0 
       cputime: 0 
   sample_size: 100 
             X: [1x100 double] 

The first field is the generation number, followed by the cpu clock-time, followed by 
the current size of the population. Next, each trait is stored as a separate array, named 
after the trait name specified in the parameter file. The last sample of this simulation 
looks like this: 
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>> sim1.samples(51) 
 
ans =  
 
        gen: 5000 
    cputime: 1.7991 
       size: 972 
          X: [1×972 double] 

which means the population had grown to 972 individuals after 5000 generations. We 
can plot the final distribution of phenotypes in a histogram: 
 
>> figure 
>> hist(sim1.samples(51).X) 

 

plot_sim 

To plot the phenotypic evolution over time, us the plot_sim.m function instead: 
 
>> plot_sim(sim1) 
 

 

The result is a heat map of the phenotypic evolution over time. The colors correspond 
to the number of individuals within each grid cell. Use caxis to change the color 
scale and colorbar to see the scale: 
>> colorbar 
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>> caxis([0 200]) 

 
It can be seen that the X trait converges to the optimal phenotype X = 0. Genetic 
variation is maintained through continuous mutations and drift. 
A more elaborate example is given below (m2.txt). The model is expanded with a 
one-dimensional continuous spatial structure and the stabilizing selection is given a 
gradually shifting optimum in space. Individuals compete and mate with neighbors in 
space. 
——————————————————————————————————————————————————————————————————— 
#Simulation parameters: 
t_max : 20000, sample_interval : 100 
microsamples: n 
checkpoint_interval : 0, keep_old_checkpoints: N 
 
seed : R, gene_tracking : N, gene_sampling : N    
# Population parameters 
F : 2, n_0 : 100 
 
# Genetics 
Genetics : Continuous_Alleles, P_mutation : 1e-4 
 
# Traits 
Trait : X, dimensions: 1, loci_per_dim: 10, initial_value: 0 
 Transform: linear, offset: 0, scale: 0.02 
Trait_constant : PD, dimensions: 1, initial_value : 1 
 
#Space 
Space : Continuous, size: 1, dimensions : 1 
 P_disperse : PD, dispersal_distance : .001 
 boundary : A, initial_position : 0 
 
# Fitness 
Fitness : Spatial_gradient, trait : X  
 k_space : 2 
 s_selection : 0.3 
Fitness : Density_dependence, r : 1, K : 100, s_space : .1 
 
# Mating 
Mating_pool : Local, s_space : .05 
Mating_trials : 100  
——————————————————————————————————————————————————————————————————— 

A sample simulation ( ./TREES m2.txt 1 ) looks like this: 
 
>> sim2 = read_sim('m2.txt',1); 
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>> figure, plot_sim(sim2) 

 

Both the trait X and the spatial position (‘pos’) are plotted across time. The population 
spreads and diversifies in space. One can easily identify clusters, both in phenotype 
space and actual space. The spread in space goes hand in hand with local adaptation 
in X. Clusters are fairly reproductively isolated due to spatial separation and selection 
against maladapted migrants. The structure of the last generation can be plotted like 
this to visualize the clustering and strong correlation between spatial position and trait 
value: 
 
>> sa = sim2.samples(end); 
>> figure  
>> histogram2(sa.X, sa.pos, 20, 'DisplayStyle','Tile') 
>> xlabel('X'), ylabel('position'), colorbar 

 
 

A third example demonstrates the versatility of the mating modules. The model 
organism has one ecological trait (BeakSize) controlling its utilization of a 
continuously distributed resource (the Gaussian resource landscape model). It also has 
two ecologically neutral traits involved in sexual selection – a three-dimensional 
display trait (Color) and a likewise three-dimensional preference trait 
(ColorPreference). This is also a demonstration of the Diallelic genetics 
module. 
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——————————————————————————————————————————————————————————————————— 
#Simulation parameters: 
t_max : 10000  
sample_interval : 25  
microsamples: n 
checkpoint_interval : 0, keep_old_checkpoints: N 
seed : R, gene_tracking : N, gene_sampling : N 
 
# Population parameters: 
F : 2 # Fecundity parameter 
n_0 : 100 # initial population size 
 
# Specify a Genetics module: 
Genetics : Diallelic, P_mutation : 1e-4 
 
# Specify traits: 
Trait : BeakSize, dimensions: 1, loci_per_dim: 40, initial_value: 0 
 Transform: linear, offset: 0, scale: 0.05 
 
Trait : Color, dimensions: 3, loci_per_dim: 20, initial_value: 0 
Trait : ColorPreference, dimensions: 3, loci_per_dim: 20, 
initial_value: 0 
Trait_constant : Choosiness, dimensions: 3, initial_value: 0.4 
 
# Fitness: 
Fitness : Resource_landscape, trait : BeakSize  
 r : 1, K_0 : 500, s_K : 1, s_a : 0.4, s_space : 0, k_space : 0 
 
# Set the mating parameters: 
Mating_pool : Global 
Mating_trials : 1e3  
Mating_preference : target_selection 
 Display : Color 
 Preference : ColorPreference 
 Strength : Choosiness 
 Disassortative_limit : 1 # not used, since Choosiness is > 0 
——————————————————————————————————————————————————————————————————— 
 

The resulting simulation can be studied using plot_sim: 
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The multi-dimensional traits are displayed with one panel per dimension, stacked on 
top of each other.  

At the end of the simulation there are three reproductively isolated species, well 
separated in trait space. The final distribution of Color-morphs can be plotted as: 
 
>> sa = sim3.samples(end); 
>> plot3(sa.Color(1,:), sa.Color(2,:), sa.Color(3,:), '.', 
'markersize',12) 
>> grid on 
>> xlabel('Color_1') 
>> ylabel('Color_2') 
>> zlabel('Color_3') 

 

One can also plot the final distribution of BeakSize and Color1: 
 
>> histogram2(sa.BeakSize, sa.Color(1,:), 20, 'DisplayStyle','Tile') 
>> xlabel('Beak size') 
>> ylabel('Color_3') 
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It is apparent that the three color-morphs also correspond to three ecologically 
separated species.  

-1 -0.5 0 0.5 1
Beak size

-20

-15

-10

-5

0

5

10

C
ol

or
1



35 

Genetic analysis and seeding the random number generator 

The last simulation in the previous section was run without saving any genetic data. If 
we want to analyze the genetics, we can re-run it using the same random number seed. 
This will reproduce exactly the same simulation. The seed is stored in the output file 
and can be obtained from the sim struct in Matlab: 
 
>> uint32(sim3.seed) 
 
ans = 
 
           4042805153 

We copy that seed to the parameter file and turn gene_tracking and gene_sampling 
on. To save disk-space, the sampling is also less frequent. All changes are highlighted 
in yellow below: 
 
——————————————————————————————————————————————————————————————————— 
#Simulation parameters: 
t_max : 10000  
sample_interval : 500  
microsamples: n 
checkpoint_interval : 0 
keep_old_checkpoints : N 
seed : 4042805153, gene_tracking : Y, gene_sampling : Y 
 
# Population parameters: 
F : 2 # Fecundity parameter 
n_0 : 100 # initial population size 
 
# Specify a Genetics module: 
Genetics : Diallelic, P_mutation : 1e-4 
 
# Specify traits: 
Trait : beak_size, dimensions: 1, loci_per_dim: 40, initial_value: 0 
 Transform: linear, offset: 0, scale: 0.05 
 
Trait : Color, dimensions: 3, loci_per_dim: 20, initial_value: 0 
Trait : ColorPreference, dimensions: 3, loci_per_dim: 20, 
initial_value: 0 
Trait_constant : Choosiness, dimensions: 3, initial_value: 0.4 
 
# Fitness: 
Fitness : Resource_landscape, trait : beak_size  
 r : 1, K_0 : 500, s_K : 1, s_a : 0.4, s_space : 0, k_space : 0 
 
# Set the mating parameters: 
Mating_pool : Global 
Mating_trials : 1e3  
Mating_preference : target_selection 
 Display : Color 
 Preference : ColorPreference 
 Strength : Choosiness 
 Disassortative_limit : 1 # not used, since Choosiness is > 0 
——————————————————————————————————————————————————————————————————— 

The simulation result is exactly the same, albeit sampled less frequently. The sample 
of the final generation now looks like: 
 
>> sa = sim3.samples(end) 
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sa =  
 
                gen: 10000 
            cputime: 109.0374 
               size: 1045 
                 G1: [160×1045 int8] 
                 G2: [160×1045 int8] 
               G1id: [160×1045 uint64] 
               G2id: [160×1045 uint64] 
           BeakSize: [1×1045 double] 
              Color: [3×1045 double] 
    ColorPreference: [3×1045 double] 

The fields G1 and G2 contain the entire genomes of all individuals. There are in total 
160 loci, associated to the traits in the order they appear in the parameter file. The 
first trait BeakSize is thus controlled by the first 40 loci, the following 60 (3×20) code 
for Color and the last 60 code for ColorPreference. The fields G1id and G2id contain 
id:s of the corresponding alleles. 
Due to the separation in Color1 and BeakSize at the end (see plot above) it is 
straightforward to single out the three ecomorphs of that sample as logical vectors: 
 
>> morph1 = sa.BeakSize<0 & sa.Color(1,:) < 0; 
>> morph2 = sa.Color(1,:) > 0; 
>> morph3 = sa.BeakSize > 0 & sa.Color(1,:) < 0; 

The morphs (or species) are numbered in BeakSize order, smallest to largest, which 
can also be confirmed: 
 
>> mean(sa.BeakSize(morph1)) 
ans = 
 -0.8776 
 
>> mean(sa.BeakSize(morph2)) 
ans = 
 0.0048 
 
>> mean(sa.BeakSize(morph3)) 
ans = 
 0.8516 

F_ST 

We can now calculate the FST-values of, for instance, the loci coding for BeakSize 
using the F_ST.m function: 
 
>> F_ST(sa, morph1, morph2, 1:40) 
ans = 
 0.7010 
 
>> F_ST(sa, morph1, morph3, 1:40) 
ans = 
    0.8005 
 
>> F_ST(sa, morph2, morph3, 1:40) 
ans = 
 0.6959 

The F_ST function returns an averaged FST following Weir & Cockerham (1984). A 
second output argument contains the FST for each locus, if required. Apparently, 
morphs 1 and 3 are most separated, whereas the other genetic separations are more 
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equal. This pattern may be at least partly artificial since there are only two alleles 
possible at each locus (we use the Diallelic genetics module). Identical alleles does 
not necessarily mean identical-by-descent – it may also be due to back-mutations or 
convergent mutations. The Continuous_alleles genetics module does not generate 
identical mutations, but FST may still be afflicted with considerable noise and biases 
(Whitlock 2011). 

F_ST_coal 

A better measure of evolutionary distance is the coalescence FST (Whitlock 2011). It 
compares the mean time to coalescence of two randomly sampled alleles within a 
group to the same measure between groups. A measure of 0 means there is no 
differentiation – coalescence times are the same within as between groups – and a 
measure of 1 implies all alleles are identical within a group but different between 
groups. Since gene-tracking is turned on, we can calculate it from the samples: 
 
>> F_ST_coal(sa,sim3,morph1,morph2,1:40) 
ans = 
 0.6798 
 
>> F_ST_coal(sa,sim3,morph1,morph3,1:40) 
ans = 
 0.9522 
 
>> F_ST_coal(sa,sim3,morph2,morph3,1:40) 
ans = 
    0.8155 

The results show that morphs 1 and 2 share more evolutionary history with each other 
than they do with morph 3 (with the largest beak). A close-up of the first, frequently 
sampled, simulation supports that conclusion (below), although the exact details can 
be hard to disentangle. A direct measure of the phylogenetic distance between morphs 
is given in the third output argument of F_ST_coal: 
 
>> [~, ~, phylodist] = F_ST_coal(sa,sim3,morph1,morph3,1:40); 
>> mean(phylodist) 
ans = 
6.3124e+03 

This statistic points at a 6300 generation old separation of morph 1 and 3. The graph 
below shows that it is in fact older. The discrepancy can be due to gene flow as well 
as mutations occurring later than the demographic split of the populations. The 
coalescence FST as it is defined here only measures separation by mutation, not by 
demography. 
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