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Abstract
Lipids and oils are produced by all single-cell organisms for essential structural
and functional roles; however, the term single cell oils (SCOs) is mainly restricted
to describe the lipids produced by a limited number of oleaginous microorgan-
isms (archaea, bacteria, yeast, fungi, and microalgae) with oil contents higher
than 20% of biomass weigh. SCOs have different fatty acid compositions from
those of plant seed or fish oils and are nowadays considered as new sources of
nutraceuticals and animal feeds. In spite of the current commercial success of
some SCOs, the development of more efficient microbial fermentation processes
and the possibility of manipulating by systems metabolic engineering the lipid
composition of cells require new biotechnological strategies to obtain high yields
of the desired SCOs. Understanding the synthesis and regulatory mechanisms
involved in the production of SCOs is fundamental to eliminate the metabolic
bottlenecks that impair achieving high oil yields.

1 Introduction

The term, single cell oils (SCOs), also named microbial lipids or microbial oils, was
created by Ratledge and Wynn (1974) to identify those lipids of single-cell organ-
isms – microorganisms – that would be suitable for human and animal consumption
as an alternative to plant and animal oils and fats. SCO was initially created to
designate the triacylglycerol (TAG) fraction of the total cell lipids to be equivalent to
the commercial plant and animal oils. However, SCO is now used to include all types
of fatty acid (FA) containing lipids, and therefore, SCO includes not only free fatty
acids and TAGs but also other complex lipids such as glycosylated and sulfur-
containing lipids.

Lipids and oils are produced by all single-cell organisms for essential structural
and functional roles; however, the term SCO is nowadays mainly restricted to
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describe the lipids produced by a limited number of organisms, named oleaginous
microorganisms (see below), which are those species able to accumulate 20–80% of
lipids per dry biomass as a reserve storage material.

Although the prospects of obtaining useful and cheap SCO have been considered
more than 60 years ago (Ratledge 2013), it was only in the past three decades that
they have begun to be produced commercially at large scale for food and feed
markets (Béligon et al. 2016). More recently, SCO has been considered as possible
source of biofuels opening new perspectives for the energy and transport industrial
sectors (Hu et al. 2008).

One of the main advantages of SCOs is that their production processes are
independent from season, climate, and location, and moreover, they can be synthe-
sized using a wide range of carbon sources including organic waste and renewable
carbon sources (see below).

On the other hand, because SCOs have different FA compositions from those of
plant seed or fish oils, they are considered as new sources of nutraceuticals highly
valuable for human life. Nutraceuticals can be defined as foodstuffs, such as a
fortified food or dietary supplement that provides health benefits in addition to its
basic nutritional value. Nevertheless, this term and its applications have not attained
a common regulatory definition in all countries so far.

In spite of the current commercial success of some SCOs, the development of
more efficient microbial fermentation processes and the possibility of manipulating
the lipid composition of cells require new biotechnological strategies to obtain high
yields of the desired SCOs. Although recombinant oleaginous microorganisms can
be engineered and accepted by industry and society, nonetheless, several approaches
have been also employed to convert other model GRAS (generally regarded as safe)
microorganisms into oleaginous cells by genetic engineering.

Therefore, taking into account all these considerations, there is a growing interest
to know how the microbial oils can be produced in a cost-effective manner and how
they can be tailor-made to meet the demands of the two most important branches of
the oil industries: oils for human and animal consumption and oils for biofuels.
However, only the food and feed uses of microbial oils will be reviewed in this
chapter. In this sense, other recent journal reviews can provide complementary
information on this matter (Béligon et al. 2016; Bellou et al. 2016; Lee et al. 2016;
Ochsenreither et al. 2016; Yoshida et al. 2016; Bharathiraja et al. 2017).

2 Oleaginous Microorganisms

As mentioned above oleaginous microorganisms are defined as cells with oil con-
tents higher than 20% of biomass weigh. Single cell oils are produced by different
microorganism groups such as archaea, bacteria, algae, yeasts, and fungi. When
growing on limiting concentrations of a key nutrient (typically nitrogen) and enough
or excess of carbon source, these microorganisms will utilize the available carbon to
synthetize and store it as reduced lipids like TAG or sterol esters (SE). Table 1
summarized the most important oleaginous microorganisms described so far. While
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the eukaryotic microorganisms synthesize TAGs with similar compositions to veg-
etable oils, prokaryotic cells also synthesize other neutral lipids (e.g., poly-
hydroxyalkanoates (PHAs) and wax esters (WEs)), and thus the peculiarities of
these organisms are described below case by case.

2.1 Archaea

Archaea do not synthesize fatty acyl esters, instead, their lipids are based on
isoprenoid chains. Archaeal membrane lipids are very different from those of
bacteria and eukaryotes as they are made up of saturated chains containing methyl
branches, attached to glycerol by ether linkages with a stereochemistry in the two
positions of the glycerol opposite that of conventional mesophilic lipids. So far, no
accumulation of TAGs has been reported yet in archaea. However, as in bacteria,
archaea produce PHA under conditions of nutrient limitation when carbon is avail-
able in excess.

2.2 Bacteria

Generally, bacteria produce SCO with a composition quite different from other
microorganisms. Bacteria can produce a large variety of complex neutral and polar
lipids, but only few of them can accumulate large amounts of TAGs. Oleaginous
bacteria have the advantage of showing high cell growth rates under simple culti-
vation methods. In bacteria, the most abundant class of neutral lipids used as
intracellular carbon and energy storage compounds are PHAs (bioplastics), such as
polyhydroxybutyrate (PHB) or polyhydroxyvalerate (PHV), TAG, WE, and, to a
lesser extent, SE.

Unlike eukaryotes only a minority of prokaryotes can accumulate TAG or
WE. The highest level of TAG accumulations has been reported in the actinomycetes
group, such as the genera Mycobacterium, Streptomyces, Rhodococcus, Micro-
monospora, Dietzia, Gordonia, and Nocardia (Kosa and Ragauskas 2011). TAGs
in cells of Rhodococcus opacus cells accounted up to 87% of the cellular dry weight.
Some bacteria such as Rhodococcus ruber are capable of accumulating both PHAs
and TAGs (Garay et al. 2014). Accumulation of WE of about 200 nm diameter has
been reported in some Acinetobacter spp. (Wältermann and Steinbüchel 2005).
Some marine-related λ-Proteobacteria like Alcanivorax borkumensis accumulate
while growing in petroleum hydrocarbons’ lipid droplet (LD) reserves that consist
of mixtures of TAGs and WE (Kalscheuer et al. 2007). Numerous bacterial species
of marine origin have now been shown to produce very long-chain polyunsaturated
fatty acids (PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA). Such isolates have been found to be particularly prevalent in high-pressure,
low-temperature deep-sea habitats and permanently cold marine environments
(DeLong and Yayanos 1986; Yano et al. 1997).
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Table 1 Most relevant oleaginous microorganisms and marketed products

Organism Product Company

Bacteria Lipids

Rhodococcus
opacus

Lipids

Rhodococcus
jostii

Lipids

Yeast

Yarrowia
lipolytica

EPA. EPA-SCO E.I. du Pont (USA)

Rhodosporidium
toruloides

Lipids

Rhodotorula
glutinis

Lipids

Lipomyces
starkeyi

Lipids

Cryptococcus
albidus

Lipids

Candida curvata Lipids

Fungi

Mucor
(javanicus)
circinelloides

Oil of Javanicus (GLA-rich
oil)

J & E Sturge (UK)

Cunninghamella
echinulata

GLA. DHA-SCO Martek/DSM (The Netherlands)

Mortierella
isabellina

ALA. GLA Sigma (USA)

Mortierella
alpina

ARA. EPA. ALA. ARA-SCO.
CABIO-oil

DSM (The Netherlands). Cargill
Alking Bioengineering Co. Ltd.
(Hubei, China). Suntory Co (Japan)

Pythium ultimum Lipids

Rhizopus
arrhizus

Lipids

Microalgae

Nannochloropsis
sp.

EPA Aurora. Cellana. Qualitas Health.
Necton. Reed Mariculture. Fitoplanton
Marino. Yantai. Astaxa. Proviron.
Archimede

Schizochytrium
sp.

DHA. DHA-SCO-S. DHA for
plus. DHAgold. NeoGreen.
AlgaPrime DHA.
EPA

Martek/DSM (The Netherlands).
Alltech (USA). DSM Nutritional
Products (USA). Coppens International
BV (The Netherlands). TerraVia
Holdings Inc. (formerly Solazyme,
USA) and Bunge Ltd. (USA).
Veramaris (DSM-Evonick)

Phaeodactylum
tricornutum

DHA. EPA Micoperi Blue Growth (Italy)

Porphyridium
cruentum

EPA Asta Technologies Ltd. (The
Netherlands)

(continued)
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2.3 Yeasts

Most oleaginous yeast can accumulate lipids at levels of more than 40% of their dry
weight and as much as 70% under nutrient-limiting conditions. However, the lipid
content differs, and fatty acid profiles differ between species. The oily yeast genera
include Candida, Cryptococcus, Lipomyces, Rhodosporidium, Rhodotorula,
Rhizpus, Trichosporon, and Yarrowia. Yeasts exhibit advantages for lipid production
due mainly to their low duplication times and metabolic versatility. They can utilize
many different carbon sources (e.g., glucose, xylose, glycerol, starch, cellulose
hydrolysates, and industrial and municipal organic wastes) for the production of
different lipids like TAG, surfactants, or PUFAs. The yeast Lipomyces starkeyi is
unique because it does not reutilize their own lipids accumulating high amounts of
lipids (Holdsworth et al. 1988).

2.4 Fungi

Oleaginous fungi are reported to accumulate intracellular lipid up to 50–70% in the
form of cytosolic lipid bodies mainly composed of TAGs (Sancholle and Lösel
1995). The distribution and diameters of their lipid bodies vary with the organism,
growth phase, and environmental conditions. Glucose, lactose, starches, oils, corn
steep liquor, and agricultural waste have been used as carbon sources for lipid
production in fungi (Thevenieau and Nicaud 2013).

The diversity of fungal species has facilitated the selection of oleaginous strains
as they can compete at commercial scale with the traditional lipid production from
plant and animal sources on the basis of several reasons: (i) high growth rates, (ii) the

Table 1 (continued)

Organism Product Company

Chaetoceros sp. DHA

Isochrysis
galbana

DHA Symrise AG (Germany)

Crypthecodinium
cohnii

EPA Martek/DSM (The Netherlands)

Chlorella sp. DHA

Thraustochytriidae
sp.

DHA

Aurantiochytrium
sp.

DHA
DHA-natur

Lubrizol Corp (USA)
ADM Animal Nutrition (USA)

Ulkenia sp. DHA. DHA-CL. DHA-Aid Lonza (Switzerland)

Algae Onavita DHA ADM (USA)

Algae Onavita ALA ADM (USA)

6 B. Galán et al.



ability to grow on cheap waste materials as substrate for oil production, (iii) the
controlled environment that is not affected by seasonal and climatic conditions, and
(iv) the possibility to engineer the key steps of lipid synthesizing enzymes to end up
with the formation of lipid and other valuable products such as PUFAs. Fungi
species, such as Aspergillus terreus, Claviceps purpurea, Tolyposporium,
Mortierella alpina, or Mortierella isabellina, are reported to accumulate lipids
(Bellou et al. 2012). These fungi are explored mainly for the production of special
lipids such as PUFAs. The oleaginous fungus,Mucor rouxii, is known to accumulate
high amounts of intracellular lipids and γ-linolenic acid (GLA). Mucor alpine and
Mortierella alliacea have a high productivity of arachidonic acid (ARA) (Eroshin
et al. 2000; Aki et al. 2001). The production of PUFAs is related to the age of the
mycelia, since the production decreases as the cells grew older (Fakas et al. 2009).

2.5 Microalgae (Cyanobacteria and Algae)

The term microalgae, in applied phycology, usually includes the microscopic algae
sensu stricto and the photosynthetic bacteria (i.e., cyanobacteria), formerly known as
Cyanophyceae. The cell structure is eukaryotic in microalgae and prokaryotic in
cyanobacteria. Several microalgae species are able to produce large amounts of
neutral lipids, typically in the form of TAGs as storage products for carbon and
energy under specific environmental stress conditions, such as nitrogen or phosphate
limitations. The lipid content can reach up to 80% in dry biomass, and therefore
these microorganisms are referred to as oleaginous microalgae (Chisti 2007; Hu et al.
2008). The interest in algae lipids arises mainly from the fact that these organisms are
able to synthesize considerable quantities of PUFAs that reach humans or animals
via the food chain or are used as food supplements (Bellou et al. 2014).

In some species belonging to Porphyridium, Dunaliella, Isochrysis,
Nannochloropsis, Tetraselmis, Phaeodactylum, Chlorella, and Schizochytrium,
lipid content varies between 30 and 50%. Higher productivities can be reached by
varying the culture conditions, like, for example, temperature, irradiance, or nutrient
availability. The indisputable advantage of microalgae is that they can use carbon
dioxide and sunlight as carbon and energy sources, respectively, for photoautotro-
phic growth. In addition, they can use organic carbon under heterotrophic or
mixotrophic culture conditions.

Microalgae applications range from human and animal nutrition to cosmetics and
the production of high-value molecules. The majority of applications concern
biomass production destined for animal or human consumption. There is also an
increasing interest in the use of microalgae lipids in numerous commercial applica-
tions, such as food, chemical, and pharmaceutical industries (Bellou et al. 2014).
However, there are still some limitations in using microalgae to produce PUFAs in
large scale due to the low biomass density in the reactors under industrial conditions.

There are few strains with special fatty acids biosynthetic capacity and therefore
of industrial interest. The most prominent DHA producer among microalgae is the
heterotrophic dinoflagellate Crypthecodinium cohnii containing more than 50%
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(w/w) DHA of total fatty acids (Jiang and Chen 2000; Ratledge et al. 2001; de Swaaf
et al. 2003a,b). Other significant DHA producers are microalgae of the genus
Schizochytrium, e.g., Schizochytrium sp. S31 (Wu et al. 2005), Schizochytrium
G13/2S (Ganuza and Izquierdo 2007), and Schizochytrium limacinum (Chi et al.
2007). Amphidinium sp. and Prorocentrum triestinum are also known as efficient
DHA producers (Makri et al. 2011). Porphyridium cruentum and Nannochloropsis
salina are able to synthetize EPA with content of 25% of total lipids (Bellou and
Aggelis 2013).

3 Microbial Oil Biosynthesis

3.1 Pathways

There are two sequential steps in the synthesis of microbial oils: FA and TAG
syntheses (Ratledge 2004; Garay et al. 2014). TAGs are also known as “neutral
lipids.”

The pathway for saturated FA synthesis is conserved among microbial species. It
starts from acetyl-CoA. In yeast, fungi, and bacteria, acetyl-CoA is produced from
organic carbon sources (glucose, acetate, etc.). Microalgae, on the other hand, may
use either inorganic carbon (CO2) or organic carbon sources (Liang and Jiang.
2013). Carboxylation of acetyl-CoA forms malonyl-CoA. This molecule serves as
a building block for several steps of condensation and reduction, resulting in FAs of
different chain length.

The synthesis of saturated FAs is catalyzed by the enzyme fatty acid synthase
(FAS). There are two groups of FAS, based on the organization of their catalytic
units. Type I FAS, present in fungi and yeast genomes, carries out all steps of fatty
acid biosynthesis as a multimeric protein complex (Schweizer and Hofmann 2004).
Type II FAS is composed of independent polypeptides and is found in bacteria and
microalgae (White et al. 2005). Regardless of their classification, both types of FAS
include the same seven enzymatic components: a malonyl/acetyltransferase, an acyl
carrier protein, a ketoacyl synthase, a ketoacyl reductase, a dehydrase, an enoyl
reductase, and a thioesterase.

The first committed step of FA synthesis is catalyzed by acetyl-CoA carboxylase
(ACC) and consists of an ATP-dependent carboxylation of acetyl-CoA to malonyl-
CoA (Fig. 1a). This reaction takes place in the cytosol in heterotrophs or both,
cytosol and plastids, in autotrophs (Bellou et al. 2016). As in the case of FAS, there
are two different forms of ACC. The first one, present in prokaryotes (AccABCD)
and archaea, consists of three functional enzymes: biotin carboxylase (BC, AccC),
biotin carboxyl carrier protein (BCCP, AccB), and carboxyltransferase (CT, AccA,
and AccD) (Guchhait et al. 1974; Lombard and Moreira 2011). The eukaryotic form
(Acc1) consists of three functional domains, homologous to the bacterial subunits,
on a single polypeptide (Konishi and Sasaki 1994). The reaction proceeds in two
steps and is biotin-dependent, as shown in Fig. 1b (Tran et al. 2015).
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Malonyl-CoA is subsequently transformed into malonyl-ACP by the action of
malonyl-CoA: ACP transacylase (MAT). In type I FAS, this reaction is catalyzed by
FabD. The next step is carried out by the β-ketoacyl-ACP synthases (KS). These
enzymes are involved in FA chain extension via Claisen condensation of fatty acyl-
thioesters and malonyl-ACP to form a β-ketoacyl-ACP intermediate elongated by
two carbon atoms.

Typically, there are two or three KSs involved in type II FAS: FabH (KS III), FabF
(KS II), and FabB (KS I). In many cases, the fabB gene is absent (Kuo and Khosla
2014; Wang and Cronan 2004). The initial cycle of elongation is catalyzed by FabH,
involving condensation of malonyl-ACP and acetyl-CoA, while subsequent cycles
of elongation are performed by FabB or FabF. On the other hand, type I FAS
contains only one KS. Following the condensation reaction, the β-ketoacyl-ACP is
reduced to β-hydroxyacyl-ACP using NADPH and H+. This reaction is catalyzed by
a β-ketoacyl-ACP reductase (KR). The same enzyme is denominated FabG in type II
FAS. After that, β-hydroxyacyl-ACP is dehydrated to trans-2-enoyl-ACP by water
elimination. The enzyme involved in this reaction is a β-hydroxyacyl-ACP
dehydrase (DH). In type II FAS, this reaction may be catalyzed by FabA or FabZ.
However, in some organisms in which desaturation step is not dependent of type II
FAS, such as cyanobacteria or gram-positive bacteria, FabA is absent. The last step
in each elongation cycle is carried out by an enoyl-ACP reductase (ER). This
enzyme catalyzes the reduction of 2-enoyl-ACP to fatty acyl-ACP at the expense
of H+ and NADPH/NADH. In type II FAS, this enzyme is denominated FabI.
Finally, acyl-ACP-thioesterase (FAT) cleaves the acyl chain and liberates the
FA. The pathway is represented in Fig. 2.

There is considerable diversity in the mechanisms used by bacteria to generate
unsaturated FAs (uFAs). In most bacteria, the bifunctional FabA is involved in the
synthesis of uFAs (Heath and Rock 1996) (Fig. 3a). In Streptococcus pneumoniae,
FabM is the enzyme responsible for introducing the double bond, which is unrelated

Fig. 1 Reaction catalyzed by the ACC. (a) Overall reaction catalyzed by ACC. (b) The two steps
of the reaction catalyzed by ACC. In the first step, BC catalyzes the carboxylation of biotin,
a cofactor covalently linked to BCCP. In the second step, the carboxyl group is transferred from
carboxyl-BCCP to acetyl-CoA by CT
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to FabA, but it is a member of the hydratase/isomerase superfamily (Marrakchi et al.
2002). In some bacteria, there is an alternative route for the generation of uFAs after
the elongation cycle. Bacillus subtilis expresses a desaturase, Des, which insert a
double bond in FA chains (Altabe et al. 2003). Pseudomonas aeruginosa produces
uFAs using FabA/B pathway. However, it possesses two aerobic desaturases: DesA,
introduces the double bond into acyl chains attached to phospholipids and has a
similar structure to the B. subtilis Des enzyme, and DesB, an inducible acyl-CoA
Δ9-desaturase (Zhu et al. 2006).

One pathway for PUFA synthesis involves the concerted action of desaturases
and elongases (Uttaro 2006) (Fig. 3b). It is found in lower eukaryotes and is
denominated the aerobic pathway, because desaturation is an aerobic process that
uses molecular oxygen. Some yeast species, such as Saccharomyces cerevisiae and
Schizosaccharomyces pombe, synthesize FAs up to oleic acid (C18:1n-9). These
species only possess a Δ9-desaturase (OLE1). Other yeasts, such as Saccharomyces
kluyveri and Kluyveromyces lactis, are able to produce up to ALA (alpha-linolenic
acid; C18:3n-3). Both possess a Δ9-desaturase, as well as Δ12-desaturase and Δ15-
desaturase (also known as ω3-desaturase) (Uemura 2012).

A number of lower eukaryotes such as fungi and microalgae produce large
amounts of PUFAs with chain lengths of C20 and greater (Uttaro 2006), following
the aerobic pathway. It is predicted that these organisms contain the complete set of

Fig. 2 Fatty acid synthesis pathway
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enzymes involved in the transformation of stearic acid to EPA (20:5n-3) and DHA
(C22:6n-3). Other lower eukaryotes also hold a Δ8-desaturase involved in an
alternate aerobic pathway to produce C20 PUFAs (Arao and Yamada 1994; Qi
et al. 2002; Wallis and Browse 1999). Most of the higher producers of EPA and
DHA are microalgae and fungi, inhabitants of cold marine environments.

The anaerobic pathway occurs in eukaryotic microalgae and some bacteria
(marine bacteria and terrestrial myxobacteria). In these organisms, PUFA synthases
are huge enzyme complexes with multiple catalytic domains, denominated polyke-
tide synthases (PKSs). PKSs carry out the same reactions as FAS and use the same
small protein, an acyl carrier protein (ACP), as a covalent attachment site for the
growing carbon chain (Metz et al. 2001; Hayashi et al. 2016; Cronan and Thomas
2009).

The most important anaerobic pathway to produce TAGs is the sn-glycerol-3-
phosphate (G3P) or Kennedy pathway (Fig. 4). In the first step, G3P is acylated with
an acyl-CoA to form lysophosphatidate (LPA), which is catalyzed by G3P
O-acyltransferase (GPAT). LPA is further condensed by LPA acyltransferase
(LPAT), with another acyl-CoA to produce phosphatidate (PA). Afterward, PA can
be dephosphorylated by phosphatidic acid phosphatase (PAP) to produce
diacylglycerol (DAG). Finally, synthesis of TAG is catalyzed by acyl-CoA:
diacylglycerol acyltransferase (DGAT), which incorporates the third acyl-CoA into
DAG (Amara et al. 2016). In yeast, in addition to DGAT-catalyzed TAG formation,
there is an acyl-CoA-independent biosynthesis of TAG. The enzyme involved in this
process, phospholipid:diacylglycerol acyltransferase (PDAT), transfers an acyl
group from the sn-2 position of phospholipids (e.g., phosphatidylcholine, phospha-
tidylethanolamine) to sn-3 position of diacylglycerol, yielding TAG and sn-1-
lysophospholipid (Banas et al. 2013). It was also found that Acinetobacter

Fig. 4 Schematic diagram of the main lipid classes and biochemical pathways involved in the
production of TAG
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calcoaceticus ADP1, a bacteria able to accumulate both WE and TAG, has a
bifunctional WE synthase/acyl-CoA:diacylglycerol acyltransferase (WS/DGAT)
that exhibits both WE synthase and DGAT activities (Stöveken et al. 2005).

In yeast, LPA is synthetized from two precursors: G3P and dihydroxyacetone
phosphate (DHAP) (Athenstaedt et al. 1999). Synthesis of LPA from DHAP occurs
in two acylation steps. The first is catalyzed by a DHAP acyltransferase (DHAPAT),
which transform DHAP into 1-acyldihydroxyacetone phosphate (1-acyl-DHAP). In
the second step, 1-acyl-DHAP is reduced in an NADPH-dependent reaction cata-
lyzed by 1-acyldihydroxyacetone phosphate reductase (ADR), yielding LPA
(Carman and Han 2009). The reactions sequence is also represented in Fig. 4.

3.2 Regulation

There is little information about the regulation of TAG synthesis in oleaginous
microorganisms. In the most widely studied and engineered oleaginous yeast,
Yarrowia lipolytica, the regulatory network of TAG biosynthesis is starting to be
elucidated (Zhu and Jackson 2015). Y. lipolytica is a promising microbial cell factory
for the production of TAGs, because it can accumulate a large amount of fatty acids
in the form of the storage lipid TAG in the cell (Seip et al. 2013; Kerkhoven et al.
2016) reconstructed a genome-scale metabolic model of this yeast and used this for
integrative analysis of multilevel omics data. Metabolite profiling and lipidomics
were used to quantify the cellular physiology, while regulatory changes were
measured using RNAseq. Analysis of the data showed that lipid accumulation in
Y. lipolytica does not involve transcriptional regulation of lipid metabolism but is
associated with regulation of amino acid biosynthesis, resulting in redirection of
carbon flux during nitrogen limitation from amino acids to lipids.

Limitation of nitrogen during continued growth of Y. lipolytica provokes a
dramatic response in the biomass composition and an increase in virtually all lipids.
Y. lipolytica under nitrogen limitation attempts to minimize the usage of nitrogen. In
these conditions, transcripts related to amino acid metabolism are downregulated.
Nitrogen restriction triggers nitrogen catabolite repression, which is regulated by
interaction of four GATA transcription factors: Gln3, Gat1, Gzf3, and Dal80
(Kerkhoven et al. 2016). These transcription factors are characterized by their ability
to bind to the DNA sequence “GATA.” As an alternative route to recycle nitrogen,
Y. lipolytica has an ortholog of the Aspergillus nidulans xanthine dehydrogenase
(Cultrone et al. 2005), which is absent in S. cerevisiae. By means of this pathway,
purines can be degraded via allantoin to release ammonia. Several genes in this
pathway are under control by Gat1 and Gln3, whereas this whole pathway is
upregulated during nitrogen restriction. A more central role in nitrogen sensing
and signalling is played by the TOR complex (Zhang et al. 2011). High-quality
nitrogen sources such as ammonium or glutamine stimulated the activation of TOR
complex (Stracka et al. 2014), whereas nitrogen starvation inhibits this complex
(Zaman et al. 2008). Based on a study of differential gene expression profile,
Kerkhoven et al. determined the upregulation of autophagy, proteasome, peptidases,
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and ubiquitylation mediated by TOR complex during nitrogen starvation
(Kerkhoven et al. 2016). Another key regulator of metabolism is Snf1, a protein
kinase that is involved in many signalling pathways. In S. cerevisiae Snf1 inhibits the
activity of the acetyl-CoA carboxylase Acc1 by phosphorylation (Shi et al. 2014),
and these phosphorylation sites on Acc1 are conserved in Y. lipolytica Acc1.
Moreover, Snf1 increases expression of β-oxidation. Nonetheless, it is likely that
additional regulation takes place such as posttranslational modifications, as it is
known that Acc1 activity is repressed by phosphorylation by Snf1 (Kerkhoven
et al. 2016). This regulatory pathway is represented in Fig. 5.

In microalgae, the mechanism of nitrogen starvation induced neutral lipid accu-
mulation. When the nitrogen levels required for the protein synthesis of growing
cells are insufficient, the excess of carbon from photosynthesis is diverted into
storage molecules, such as TAGs (Scott et al. 2010). The phenomenon of nitrogen
starvation in microalgae has been analyzed using diverse omics approaches (Blaby
et al. 2013; Dong et al. 2013; Schmollinger et al. 2014; Park et al. 2015). These
studies have notably contributed to the elucidation of TAG biosynthetic pathway in
microalgae; however, limited putative regulators of this metabolic response have
been pointed out. Nitrogen response regulator 1 was identified in Chlamydomonas as
a putative transcription factor with a regulatory role in nitrogen assimilation and
TAG accumulation in nitrogen-depleted conditions (Boyle et al. 2012). An inser-
tional mutation of nitrogen response regulator 1 led to a 50% reduction in TAG
accumulation; it is possible that there are other key regulators controlling lipid
synthesis under nitrogen stress. Another study identified TAG accumulation

Fig. 5 Schematic overview of regulation that occurs during nitrogen limitation in a high lipid-
producing strain. (Figure adapted from Fig. 5 in Kerkhoven et al. 2016)
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regulator 1, a tyrosine kinase involved in the control of TAG accumulation upon both
nitrogen and sulfur deficiencies (Kajikawa et al. 2015). The changes in TAGs cannot
only be explained by modulation in intracellular nitrogen or carbon/nitrogen avail-
ability. These changes appear to be controlled by sensing mechanisms involving
transcription factors (Park et al. 2015). An early study showed that silicon starvation
not only induces TAG synthesis but also modulates FA profile, with increasing
proportions of saturated and monounsaturated fatty acids (MUFAs) being observed
under silicon-starvation conditions (Roessler 1988). An increase up to 50% in lipid
content was observed under silicon-starvation conditions in several microalgae
(Griffiths et al. 2012).

In bacteria, a few studies suggest that TAG is synthesized during times of stress
and resource depletion. Moreover, TAGs are used to generate precursors that will be
converted to phospholipids or other products when food supplies improve and
growth resumes (Alvarez et al. 2000, 2001, 2013; Olukoshi and Packter 1994).
For example, in Rhodococcus members and other actinomycetes, the biosynthesis
and accumulation of TAGs seems to be a process linked to the stationary growth
phase or as a response to stress. Detailed research of TAG metabolism in these
microorganisms started only a few years ago. Thus, the fundamental understanding
of this process and its regulation remain to be clarified. Recently, a regulatory protein
(NlpR: Nitrogen lipid Regulator), which contributes to the modulation of nitrogen
metabolism and TGA accumulation in oleaginous rhodococci was identified
(Hernandez et al. 2017). NlpR acts as a pleiotropic transcriptional regulator by
activating of nitrate/nitrite assimilation genes and others genes involved in fatty
acid and TAG biosynthesis, in response to nitrogen deprivation. Moreover, this
regulator contributes to the distribution of carbon into the different lipid fractions
in response to nitrogen levels, increasing the rate of carbon flux into lipid metabo-
lism (Hernandez et al. 2017).

3.3 Oil Accumulation (Subcellular Structures)

TAG needs to be stored within the cell in a way that allows FA mobilization when
needed. This function is fulfilled by cytosolic organelles called lipid bodies. Lipid
bodies consist primarily of TAGs and cholesterol esters surrounded by a phospho-
lipid monolayer rich in characteristic proteins and are present in the cytoplasm as a
form of energy storage (Ryckebosch et al. 2014a). These lipid-rich compartments are
formed in all eukaryotic organisms (Zweytick et al. 2000), including fungi and
yeasts, as well as in a few prokaryote genera such as Rhodococcus and Streptomyces
(Wältermann et al. 2005). All oleaginous microorganisms contain lipid bodies in the
cells, where most lipids are concentrated as neutral lipids (Garay et al. 2014).

Most yeasts produce small numbers of cytosolic lipid bodies, but oleaginous
yeasts accumulate up to 25% (w/w) storage lipid in response to a high carbon:
nitrogen ratio (Holdsworth and Ratledge 1991). In S. cerevisiae, lipid bodies contain
equal amounts of TAGs and sterol esters (Leber et al. 1994). LD biogenesis takes
place between two membrane leaflets of the endoplasmic reticulum (Choudhary
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et al. 2011). DGATs synthesize TAGs in the inner and outer leaflet of the endoplas-
mic reticulum, which begin to accumulate, generating lenslike protrusions and
promoting the recruitment of structural proteins. When there is enough accumulation
of TAG between the leaflets, the outer buds off and the LD formed (Adeyo et al.
2011; Bozaquel-Morais et al. 2010).

In microalgae, lipid bodies emerge from plastidial membranes (Fan et al. 2011;
Goodson et al. 2011). They grow facing the cytosol or toward the inside of the
plastid, facing the stroma, which is the major aqueous fluid surrounding the thyla-
koids inside the chloroplast (Liu and Benning 2013). The mechanisms underlying
the orientation of LD growth in plastid membranes are not well understood.

Many prokaryotes accumulate lipophilic compounds as lipid bodies in the cyto-
plasm. Members of most genera synthesize polymeric lipids such as PHB or other
PHAs (Steinbüchel 2001), whereas accumulation of TAGs and WEs in lipid bodies
is a property of only a few prokaryotes. Like the formation of PHA, TAG and WE
biosynthesis is also promoted in response to stress imposed on the cells during
imbalanced growth, for example by nitrogen limitation, if an abundant carbon source
is present. Lipids act as storage compounds for energy and carbon, needed for
maintenance of metabolism and synthesis of cellular metabolites during starvation
and in particular when growth resumes.

Large amounts of TAGs have been reported mainly in nocardioforms such as
Mycobacterium sp., Nocardia sp., Rhodococcus sp., Micromonospora sp., Dietzia
sp., Gordonia sp., and Streptomyces sp., which accumulate LDs in cells and mycelia
(Akao and Kusaka 1976; Alvarez et al. 1996; Alvarez and Steinbuchel 2002;
Barksdale and Kim 1977; Hoskisson et al. 2001; Olukoshi et al. 1994), as well as
in Alcanivorax sp. and other hydrocarbonoclastic marine bacteria (Kalscheuer et al.
2007). Moreover, TAGs frequently accumulate in members of the gram-negative
genus Acinetobacter, though the amounts are small in comparison to accumulated
WEs (Stöveken et al. 2005). In general, TAGs are stored in spherical lipid bodies,
with quantities and diameters depending on the respective species, growth stage, and
cultivation conditions. One interesting example is R. opacus PD630, where lipids
can exceed 70% of the dry weight (Alvarez et al. 1996).

The first reports on WE biosynthesis in gram-negative bacteria were published
more than 30 years ago, mainly involving the genus Acinetobacter (Fixter and
Fewson 1974; Fixter and McCormack 1976; Gallagher 1971; Scott and Finnerty
1976). Meanwhile, accumulation of WEs was also described for Moraxella, Micro-
coccus, and Fundibacter (Bredemeier et al. 2003; Bryn et al. 1977; Russell and
Volkman 1980). WE biosynthesis has also been reported in actinomycetes: for
example, in Corynebacterium,Mycobacterium tuberculosis, and Nocardia (Bacchin
et al. 1974; Raymond and Davis 1960; Wang et al. 1972). In Acinetobacter
calcoaceticus, WEs can reach 25% of the dry weight, indicating that WEs act as
main storage compound (Fixter and Fewson 1974; Wältermann et al. 2005), but only
one or a few WE bodies are observed per cell (Scott and Finnerty 1976; Wältermann
et al. 2005). WEs are not exclusively produced as intracellular bodies. Some strains
of Acinetobacter sp. and the marine bacterium Fundibacterium jadensis also pro-
duce extracellular WEs from alkanes (Bredemeier et al. 2003; Dewitt et al. 1982;
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Makula et al. 1975; Singer et al. 1985). The function of extracellular WEs and the
mechanisms of export are not known yet.

Few prokaryotes accumulate TAGs as energy stores. They tend instead to seques-
ter glycogen, polyphosphates, and PHAs. Biosynthesis of PHAs is characteristic
among prokaryotes (Koutinas et al. 2014), and, as in the case of TAGs, PHAs are
stored as insoluble cytosolic inclusions (Poirier et al. 1995). The species that are able
to produce PHAs accumulate these compounds in lipid bodies, which are also called
carbonosomes (Bartz et al. 2007; Jendrossek 2009). The PHA bodies are surrounded
by amphipathic, small surface proteins called phasins (Grage et al. 2009; Jendrossek
2009). They contain PHB, polyhydroxyvalerate, or copolymers such as poly
(3-hydroxybutyrate-co-3-hydroxyvalerate). PHAs have thermoplastic and elasto-
meric properties and are recyclable materials that can be easily degraded into carbon
dioxide and water (Philip et al. 2007).

Accumulation of PHA was first reported in Bacillus megaterium (Lemoigne
1926). Since then, many reports on the occurrence of PHAs have been published,
including reports on members of the halobacteria, whereas PHAwas not detected in
lactobacilli, Enterobacteriaceae, and methanogens (Garay et al. 2014). Ralstonia
eutropha is the best characterized bacterium related to PHA metabolism. These
bacteria accumulate 10 to 20 intracytoplasmic inclusions of PHB per cell and
amounting up to 90% of the cell dry weight (Eggers and Steinbuchel 2014). A few
actinomycetes, for example, R. ruber, simultaneously synthesize and accumulate
similar amounts of TAGs and the copolyester poly(3-hydroxybutyrate-co-3-
hydroxyvalerate) from unrelated substrates such as gluconate, glucose, and acetate
(Alvarez et al. 2000).

4 Commercial Oils, Applications, and Market

4.1 The Diversity of Fatty Acids

FAs differ by the length of the aliphatic chain, the degree of unsaturation, the
location, and the cis or trans conformation of double bonds. In general, the FAs
are classified as saturated fatty acids (e.g., palmitic, stearic), MUFAS (e.g.,
palmitoleic, oleic), and PUFAs. Moreover, PUFAs can be classified in several
families (groups or classes) such as omega-3 (ω-3, v-3, or n-3), omega-6 (ω-6, v-6,
n-6), and other groups. The ω-3 family includes ALA (C18:3n-3), EPA (C20:5n-3),
and DHA (C22:6n-3), while the ω-6 family gathers linoleic acid (LA (C18:2n-6)),
GLA (C18:3n-6), ARA (C20:4n-6), and conjugated linoleic acid (CLA).

PUFAs of the ω-3 and ω-6 families are essential for maintaining many functions
in mammalians including humans. ALA and LA are the precursors for the synthesis
of more highly unsaturated and longer-chained fatty acids of ω-3 and ω-6 families,
respectively. Because mammals lack the ability to synthesize LA and ALA, they
must be supplied by the diet from different foods sources.

LA is practically found in all foods and is the predominant PUFA in land-based
meats, dairy, vegetables, vegetable oils, cereals, fruits, nuts, legumes, seeds, and
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breads. GLA can be found in some plant oils such as evening primrose and borage
oils. DHA and ARA are found in mother’s milk which provides their requirements
for neural development and visual acuity to newborns. However, since DHA and
ARA are absent from cow’s milk, when it is used in place of mother’s milk, these
PUFAs should be added to the diet of babies to ensure a normal development.

Although fish oil is the best source of PUFAs, the inclusion of fish oil into the
infant milk formulas is not recommended due to the presence of environmental
pollutants in fishes. Moreover, the production of fish oil is now reaching their limits
(see below). Therefore, oleaginous microorganisms can provide an alternative and
economically feasible source of PUFAs, provided that most of the PUFAs occur in
TGAs which is the preferred form to take lipids within the diet. For instance, it has
been shown that microalgae oils contain sufficient ω-3 PUFA to serve as an alterna-
tive for fish oil (Ryckebosch et al. 2014b). Thus, this topic will be focused in the
applications and market of PUFAs and in particular PUFA-containing microbial oils.

4.2 PUFAs for Human Nutrition and their Nutraceutical
Properties

As mentioned above, strictly, EPA and DHA are nonessential ω-3 FAs as the human
body can convert essential ALA into EPA and DHA. However, in humans, this
conversion is not efficient enough to meet the EPA and DHA demand to impart
beneficial health effects; thus, it is expected to obtain these fatty acids from dietary
sources (Lee et al. 2016; Béligon et al. 2016).

DHA is an essential component of cell membranes in some human tissues. For
instance, it accounts for over 60% of the total fatty acids in the rod outer segment in
the retina. Moreover, DHA is an essential nutrient during early human development
(Sijtsma and de Swaaf 2004). DHA also can act as breast and colon cancer chemo-
preventive agent (Hou et al. 2016).

DHA and EPA are involved in early neural and retinal development being
essential for the proper visual and neurological development of infants. As preterm
and young infants are unable to synthesize DHA at a rate fast enough to keep up with
the demand from the rapidly growing brain, they should obtain these compounds
from their diet. As mentioned, breastfeeding serves as a good source of PUFAs. In
general, while total fat levels in the typical Western diet are too high, the intake of
long-chain ω-3 PUFA is too low. DHA supplementation at either 50 mg/day or
100 mg/day for 6 weeks was effective in increasing plasma phospholipid DHA
contents of children.

The nutritional benefits of EPA are less clear than those for DHA. Nevertheless,
EPA has been advocated as a highly desirable PUFA that can exert beneficial effects
on hypertension, thrombosis, arteriosclerosis, arthritis, and various inflammatory
responses (Lenihan-Geels et al. 2013). The baseline blood levels of EPA are
inversely related to the risk of sudden death due to cardiovascular disease. It has
been used to prevent arteriosclerosis and coronary heart disease, and a low dose of
20 mg/kg/day appears to protect against cardiac arrhythmia. It has also been used for
the alleviation of some neuropsychiatric disorders, including manic depression
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(bipolar disorder), depression, schizophrenia, and also attention deficit hyperactivity
disorder in children (Ratledge 2013).

Interestingly, DHA, when administered as a single PUFA, either to young chil-
dren or to adults, can be retro-converted into EPA by simple loss of a C2 unit. EPA
was, however, contraindicated in babies, and thus, DHA was not as effective as
originally hoped. However, when DHAwas given to infants along with ARA, ARA
prevents the retro-conversion of DHA to EPA by blocking the degradative pathway.
A combination of two volumes of ARA and one volume of DHA is the most
effective ratio for providing these PUFAs to newly born infants, including premature
babies (Sinclair and Jayasooriya 2010).

GLA has been also incorporated into infant formula and used for treatments of
atopic eczema, rheumatoid arthritis, multiple sclerosis, and premenstrual tension.

Combinations of EPA and DHA can be satisfied by consumption of fish oils
particularly those from the so-called oily fish. But not every person and particularly
some people that do not eat animals are willing to have fish products in their diet.

ARA is the most abundant PUFA in humans and has a major role as a structural
lipid associated predominantly with phospholipids and is a direct precursor of a
number of eicosanoids regulating lipoprotein metabolism, blood rheology, leukocyte
function, and platelet activation.

The supplementation with ARA and DHA appears to be beneficial in reducing the
risk of HIV-1 transmission, particularly during the period of breastfeeding.

Antibacterial activity of PUFAs on Propionibacterium acnes and Staphylococcus
aureus to treat acne and superficial infections has been also investigated (Desbois
and Lawlor 2013).

The combination of multifunctional factors with synergic effect including PUFAs
is now considered as a possibility to develop more effective multifunctional foods
(Yamada 2017).

4.3 Animal Feed

Microalgae can be incorporated into the feed for a wide variety of animals ranging
from fish (aquaculture) to farm animals. The main applications of microalgae in
aquaculture are associated with nutrition as a source of proteins, vitamins, and
PUFAs. Fish meal and fish oil were used to complement pig and poultry diets in
the last century, but with the growth of aquaculture from the 1960s onward, these
products have been diverted toward feeding fish. Today diets complemented with
fish oil are used for companion animals.

Fisheries are currently providing fish not only for human consumption but also
for fish feed, and they are supplying fish at a so large mass scale that it appears no
longer sustainable. In fact, the Food and Agriculture Organization (FAO) of the
United Nations suggests that fish oil demand will be soon over the production
capacity.

Currently, aqua feed relies on the inclusion of marine ingredients, fish meal, and
fish oil since, as with humans, farmed carnivorous marine fish species are inefficient
at converting ALA into significant levels of EPA and DHA. Therefore, these PUFAs
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must be supplied in the fish diet usually from marine ingredients and fish oil derived
from pelagic fisheries (Sprague et al. 2016).

Microalgae are required for larval nutrition during a brief period, either for
direct consumption in the case of mollusks or directly as food for the live prey fed
to small fish larvae. The most frequently used species in aquaculture are Chlorella,
Tetraselmis, Isochrysis, Pavlova, Phaeodactylum, Chaetoceros, Nannochloropsis,
Skeletonema, and Thalassiosira. Microalgae such as Dunaliella salina,
Haematococcus pluvialis, and Spirulina are also used as a source of natural pigments
for the culture of prawns, salmonid fish, and ornamental fish. Mainly the microalgae
Arthrospira and Chlorella are used also to feed many types of animals: cats, dogs,
aquarium fish, ornamental birds, horses, poultry, cows, and breeding bulls (Spolaore
et al. 2006).

However, the aquaculture industry is experiencing so rapid increases in fish oil
price due to flat supply and increased global demand for this commodity that these
finite marine ingredients have gradually been replaced with alternatives of terrestrial
agricultural origin. Rapeseed oil is the most commonly utilized fish oil alternative in
Europe. Nevertheless, terrestrial plants are not so efficient since they only contain
shorter-chain PUFAs such as ALA and are completely devoid of any EPA and DHA.
Because of that, PUFA-containing microalgae biomass has been used directly as an
alternative feed additive to plant oils (Chauton et al. 2015; Sprague et al. 2016 2017).

4.4 Market

As mentioned, fish oil is the main source of PUFAs, but the world supply of fish oil is
currently stabilized at around one million t per year (Finco et al. 2017). Because
approximately 70% of the available fish oil is used for fish feed production for
salmonids, only a small portion of the captured fish is now used to produce
functional foods for humans.

The global PUFAmarket has been estimated to be valued at US$ 4212M by 2016
end and is expected to witness a compound annual growth rate (CAGR) of 10.7%
over the period 2016–2026 (FMI 2016). Growth of the global PUFA market is
mainly driven by increasing prevalence of chronic diseases such as cardiovascular
diseases, stroke, cancer, and diabetes. On the basis of product type, the market is
categorized into ω-3 and ω-6 PUFAs.

The ω-3 market segment is further segmented into ALA, DHA, and EPA.
According to FAO (2014) and Grand View Research (2014), the global demand
for ω-3 PUFAs was 21,900 t in 2012, and it is expected to increase to more than
135,500 t in 2025. Other studies estimate a market of $9.94 billion for ω-3 PUFAs in
2015 with a projected grow at a CAGR of 13.8% from 2015 to 2020
(Marketsandmarkets 2016). The particular DHA segment is expected to register a
high CAGR of 11.7% during the 2016–2026 periods (FMI 2016).

The ω-6 market segment is further segmented into LA and ARA. The ARA
segment is expected to dominate over LA segment and is estimated to account for the
highest market share of 73.2% by 2016 (FMI 2016). The global market for ARAwas
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$176.48 million in 2016 and is expected to grow at a CAGR of 6.8% during
2017–2022 (Mordor Intelligence 2017).

The emerging problem is to provide enough food resources containing PUFAs to
an increasing population. Thus, the potential demand for ω-3 PUFAs is 1.274 million
t based on a supply of 500 mg/day. However, the supply by oil fish is only 0.84
million t, so the gap is 0.434 million t.

Some of the major company players in this market are Koninklijke DSM N.V.,
Enzymotec Ltd., Aker BioMarine AS, Croda International PLC, GlaxoSmithKline
plc, FMC Corporation, Omega Protein Corporation, BASF SE, Cargill Incorporated,
Polaris Nutritional Lipids, Zymes LLC, Denomega Nutritional Oils, Barlean’s
Organic Oils, Vega Nutritionals Ltd., Arista Industries, Copeinca ASA, Horizon
Organic, Pharma Marine USA LLC, Cabio Bioengineering, Cayman Chemicals,
Guangdong Runke, Kingdomway, Suntory, Zhejiang Weiss (Wecan), Lonza Group
AG, GC Rieber Oils AS, Kerry Group, Cellana Inc., Clover Corporation, Archer
Daniels Midland Company, Nordic Naturals Inc., Smit & Zoon, Solutex GC, Stepan
Company, Neptune Wellness Solutions, FrieslandCampina, and others. The manu-
facturers, marketers, and supporters of EPA and DHA omega-3 fatty acids have
created the GEOED association (http://www.goedomega3.com/).

Several sources have been evaluated as alternative market sources of PUFAs, but
due to their wide availability and ability to accumulate large amounts of lipids in a
short time, oleaginous microorganisms have been used in the production of oils rich
in PUFAs, mainly ω-3 acids, from the mid-1990s. In this sense, while oleaginous
plants can reach 500–5000 kg/ha/yr. of lipids, microorganisms can achieve up to
2000 kg/m3/yr. of lipids (Finco et al. 2017).

Commercial production of microbial oils is mainly restricted to yeasts, filamen-
tous fungi, and algae. The first microbial oil that was produced at commercial scale
was the GLA-rich oil, named Oil of Javanicus, from Mucor circinelloides. This oil
was produced by J&E Sturge (UK) from 1985 to 1990 competing with the GLA
from the seed oil of Oenothera biennis. This oil is mainly sold in the UK as a dietary
supplement for the alleviation of premenstrual tension in women and due to price
competitions only low volumes of the microbial oil have been produced (i.e., 5–10 t)
(Ratledge 2006).

After the initial approach of microbial oil to the market in the 1990s, David Kyle
at Martek Inc. (USA) company began to explore the possibility of producing long-
chain microbial PUFAs. The key targets were initially EPA and DHA (Boswell et al.
1992). The company exploited Crypthecodinium cohnii as DHA producer.

Currently DHA is also produced commercially by other microorganisms such as
Schizochytrium, Aurantiochytrium, and Ulkenia (also known as Labyranathula).
The company that has originally developed this process was OmegaTech (USA)
led and pioneered by Bill Barclay that was acquired by Martek in 2002. This oil is
now also produced by other companies including Lonza Group (Switzerland),
Jiangsu Tiankai Biotechnology Co. Ltd. (China), and several smaller companies in
the USA and the UK. The FDA gave approval and GRAS status to DHA as
DHASCO oil in 2002. About 20 countries with 150 companies were producing
DHA in 2015 (Finco 2017).
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In addition, in the 1980s, a process for the microbial ARA production was
identified in Japan using Mortierella alpina (Totani et al. 1987). However, the
production of ARA by fermentation was developed by the company, Gist-brocades
(Netherlands). An agreement was subsequently reached between Martek Inc. and
Gist-brocades for the latter company to produce the ARA-rich oil for exclusive sale
to Martek. The ARA-rich oil is now also produced by Suntory in Japan, as
SUNTGA40S, and by Cargill, as CABIO oil, together with Wuhan Alking Bioen-
gineering Co. Ltd. in China, where it is used for infant nutrition. In 2012, the EU
gave approval to allow for sales of the ARA-rich oil for infant nutrition in Europe.

As commented above, the combination of ARA and DHA oils was found to be
most appropriate for providing these key PUFAs to newly born infants. Safety trials
have shown the oil to have an unimpeachable safety record (Ryan et al. 2010).
Sales of DHA and ARA oils have steadily increased since they were launched to
the market and are now commercialized into over 70 countries for more than
20 companies.

DSM (Dutch State Mines) (Netherlands) has the global leadership on the pro-
duction of ω-3. The company is the main supplier of DHA to the US market (with
80% of the market share) and to European and Asian markets (excluding China). The
position of DSM is because the company Martek one of the largest suppliers of these
oils was taken over by DSM, who had previously acquired Gist-brocades in 2011.
For its last year of trading as an individual company, Martek Biosciences recorded a
revenue of US $ 317 million for sales of the oil for infant nutrition. Although the
selling price of the oil is commercially sensitive, it is considered that at least 2000 t
of microbial DHA are sold annually.

Alltech, a global animal nutrition company, produces DHA from heterotrophic
algae in closed stainless steel fermenters in one of the largest algae production sites
in the world in Winchester (Kentucky, USA) aimed at the animal feed market.

Microbial EPA is mainly produced using microalgae. The EPA producer compa-
nies include Qualitas Health Ltd. (Israel), Photonz (New Zealand), and Algisys LLC
(USA). The oil produced by Qualitas Health is sold as EicoOil, being a mixture of
EPA with other PUFAs. DuPont (USA) has developed an alternative to microalgae
producing EPA using a genetically modified Y. lipolytica (Xue et al. 2013). However,
by using naturally occurring oleaginous yeast, DuPont has been also able to produce
EPA (Damude et al. 2011), and now this EPA-rich oil has received the GRAS status
from the FDA.

Concerning the patents on microbial oils, it is possible to classify them according
to different general subjects: (i) downstream processes for the isolation of microbial
oils, (ii) microbial oil production and uses, and (iii) engineering microorganisms for
oil production (Table 2).
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Table 2 Examples of patents concerning to microbial oils

Subject Organism Patent Proprietary

Downstream processes Algae, fungi
All
All
All
Algae, fungi
All
All
All
C. cohnii
All
Algae, fungi
Algae, fungi

WO2015095688A1
EP2419520A4
US6166231
US4905761
US6255505
WO2008151149
WO2006046943A2
WO2003049832A1
WO1991011918A1
WO2011153246A2
EP0207475A2
US6255505

Dsm Ip Assets B.V.
Solazyme, Inc.
Martek Biosciences
Corp
IIT Research Institute
DSM Gist BV
Solazyme, Inc.
Martek Biosciences
Corp
Martek Biosciences
Corp
Martek Biosciences
Corp
Martek Biosciences
Corp
Kanegafuchi Kagaku
Kogyo KK
DSM Gist BV

Microbial oil production
and uses

C. cohnii
Algae, fungi
M. schmucker
Fungi
Schizochytrium
All
M. schmucker
Mortierella
Mortierella
Ulkenia
Dinoflagellates
Marine
S. limacinum
S. limacinum

US20040072330
US6428832
US5882703
EP0269351A3
US5130242
US5374657
US7666657
US4783408
EP0276541A2
US6509178
US5397591
WO1989000606A1
US8232090
WO2013010090

University of Hull
Koninklijke DSM NV
OmegaTech Inc.
Lion Corp
Phycotech Inc.
Martek Biosciences
Corp
Martek Biosciences
Corp
Agency Ind Sci &
Technol
Suntory Ltd.
Nagase and Co Ltd.,
Suntory Ltd.
Martek Biosciences
Corp
Maricultura,
Incorporated
ABL Biotechnologies
Ltd.
Allthech Inc

(continued)
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5 Industrial Production Processes

A crucial point for the establishment of microbial lipids utilization is the cost-
effective production and purification of fuels or products of higher value. This
topic will analyze the state of the art on the production and extraction of
microbial oils.

5.1 Culture Conditions

The development of a microbial PUFA production process requires the selection of
the proper microorganism and optimized cultivation techniques. Bacteria, algae,
fungi, and yeasts are able to accumulate lipids, but in fact, there are only few studies
on PUFAs produced by bacteria. Moreover, the potential for lipid production is a
species-specific characteristic, as well as the ability to produce PUFAs.

In order to select appropriate lipid producer strains, the most important parame-
ters to be considered include the specific growth rate, the biomass production under
optimal culture conditions, the total lipid content, and their PUFA proportion.
Therefore, to control, to validate, and to optimize the processes, one of the most
important parameters for lipid production is the lipid content of the cell mass. The
yield and the composition of the microbial lipids depend on the type of fermentation
and the particular operational conditions (e.g., culture medium, nitrogen source, pH,
temperature, aeration, etc.).

In general, the production of microbial oils can be realized by submerged (SmF)
or solid-state fermentations (SSF). In SmF conditions oleaginous microorganisms

Table 2 (continued)

Subject Organism Patent Proprietary

Engineering
microorganisms

Yeasts
All
Y. lipolytica
S. cerevisiae
Yeasts
Yeasts
Cyanobacteria
Y. lipolytica
All
S. cerevisiae
Cyanobacteria
Cyanobacteria
Pseudomonas
YS-180
Y. lipolytica

US8951776
US8765404
US20130344548
US7736884
US7198937
US20060160193
US20100081178
US8435758
US20110223641
WO2005118814
WO2012087963
WO2012087982
US6207441
US7550286

MIT USA
MIT USA
MIT USA
Fluxome Sciences AS
E I du Pont de Nemours
and Co
E I du Pont de Nemours
and Co
Targeted Growth Inc.
E I du Pont de Nemours
and Co
MIT USA
Fluxome Sciences As &
Authors
Targeted Growth, Inc.
Matrix Genetics, Llc
Seong Gu Ryu
E I du Pont de Nemours
and Co
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can be cultivated as batch, fed-batch, or continuous cultures, using baffled and
unbaffled flasks as well as stirred tank reactors (Ochsenreither et al. 2016). On the
other hand, SSF reproduces the natural microbiological processes such as food
production, composting, and ensiling. In general, the advantages of SSF are a higher
productivity, the possibility to use low-cost media and to reduce energy and waste
water costs. The disadvantages of SSF are, for example, the difficulties in scale-up,
in the control of process parameters, and an increasing cost for product recovery
(Ochsenreither et al. 2016).

One advantage of using microorganisms to produce PUFAs is that they can be
cultivated on various types of carbon substrates, even on different organic industrial
waste. Since carbon sources constitute over 60% of the total production cost in
typical fermentation processes, the use of low-cost carbon sources, such as organic
waste, should therefore be considered as an important factor to make the process
economically feasible. As well organic and inorganic nitrogen sources are used
individually or in combination including yeast extract, urea, peptone, glycine,
KNO3, NH4NO3, and (NH4)2SO4 (Ochsenreither et al. 2016).

In addition to oleaginous yeast and fungi, microalgae are currently produced at
large scale as a microbial oil source. In fact, microalgae are currently cultivated at
large scale to produce lipids for biofuels as well as food and feed products. The cost
of microalgae production is a challenge for the commercial utilization of this
biomass as biofuels. However, as the target price level of microalgae as food and
feed ingredients is higher, the economic feasibility appears to be closer for nutrition
purposes than that of biofuel uses.

Two main approaches are taken to improve the production economics of photo-
trophic microalgae, that is, increasing the productivity of the cultivation systems and
reducing both capital and operational production costs. In this sense, large-scale
industrial cultivation of phototrophic microalgae can be conducted in open pond
systems or in closed photobioreactor systems (CPS). Open ponds are often cheap
raceway constructions which provide large volumes, but these systems have a low
productivity and high energy costs required to harvest the cells at low densities of
0.1–0.2 g dry cell weight/l. CPS are more expensive to build, but have much higher
productivity, since they are designed to maximize the utilization of light energy and
to achieve efficient uptake of nutrients and CO2 and have higher cell densities at
2–4 g dry weight/l, which lower the harvesting costs.

The economics of microalgae production depend on the photosynthetic produc-
tivity, and there are ongoing efforts to increase the microalgae productivity following
different strategies (Chauton et al. 2015). The first strategy is to exploit the cultiva-
tion conditions to direct the metabolism toward lipid production. The second is to
improve biomass productivity or lipid yield by mutagenesis and selective breeding,
and the third strategy is to improve strains by genetic modifications to optimize light
absorption and increase the biosynthesis of EPA and DHA (see below).

Lipids serve as a carbon and energy storage in microalgae under limiting growth
conditions when photosynthesis exceeds the limitations for growth. To control the
balance between biomass production and lipid accumulation, physiological variables
can be adjusted to induce lipid accumulation and also shift the lipid composition
toward the desired lipids: growth restriction due to limited illumination and
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deprivation of nitrogen, sulfur, or phosphate is used to induce lipid accumulation and
composition changes.

On the other hand, many efforts are focused on how to achieve maximum
biomass productivity by increasing the photosynthetic efficiency (PE), which is
the percentage of the solar irradiation that is converted to biomass. The overall PE
of a cultivation system will depend both on the technological efficiency of the
cultivation system and the biological efficiency of the production strain to convert
the irradiation into chemical energy. Then photosynthetic productivity is directly
depending on the intensity of the solar irradiation. Only the light within the wave-
length range of 400 to 700 nm, called photosynthetically active radiation (PAR), can
be utilized by plants and algae, which in practice means that only 40–45% of total
solar energy can be utilized for photosynthesis.

5.2 Downstream Processes

Downstream processing cost is one of the major obstacles to be solved for full
economic efficiency of microbial lipids (Béligon et al. 2016; Ochsenreither et al.
2016). Because microbial oils are intracellular for storage purposes, they have to be
extracted upon further applications. Natural oleaginous strains have not been
engineered so far to excrete TAGs or free fatty acids in order to simplify downstream
processing. However, metabolic engineering efforts have been conducted for secre-
tion of fatty acids in Escherichia coli (Liu et al. 2012; Meng et al. 2013) and
S. cerevisiae (Michinaka et al. 2003; Leber et al. 2015).

Furthermore, for downstream processing, it is important to know if PUFAs are
present as part of the membrane structure, e.g., in phospholipids, or as part of TAGs
in the cytosol, as well as to know the type of PUFAs present in the cells.

The extraction method and the lipid quantification must be fast, efficient, and
applicable to an industrial scale-up. Therefore, the extraction methods, that may be
highly suitable for analytical purposes, might not be applicable in industrial large-
scale operations due to high costs or simply a non-scalable extraction setup. The
optimal extraction method should also enable a reproducible, quantitative, cost-
effective, and nontoxic removal of lipids under mild conditions to prevent oxidative
damage to PUFAs. The final processing of oils involves purification or refining and
modification in order to stabilize the crude oil. Extraction methods, using solvents,
developed to extract lipids from fishes or vegetables have been modified and adapted
for microbial lipids extraction. Microbial lipids applied in food industry cannot be
extracted with toxic solvents or should in the best case avoid any solvents to prevent
solvent residues in food or contaminations with heavy metals (Uematsu et al. 2002).
Additionally, the optimal method in terms of oil recovery has to be elucidated for
each strain.

Extraction methods include Soxhlet extraction, Folch extraction, pressurized
liquid extraction, and extraction with supercritical fluids (Ochsenreither et al.
2016). Several automated Soxhlet extraction systems have been developed and are
commercially available. The Folch method, similar to the method developed by

26 B. Galán et al.



Bligh and Dyer, is the most reliable extraction method for total lipids and is often
used as a standard technique in extracting microbial lipids. The pressurized liquid
extraction is similar to Soxhlet extraction but uses liquid solvents at elevated
temperatures and pressures. For extracting lipids supercritical CO2 is a good solvent
(Sahena et al. 2009).

For the extraction of lipids from microbial biomass, cell disruption is very
important, because efficiency of cell disruption directly influences subsequent
downstream operation and overall extraction efficiency (Senanayake and Fichtali
2006). A multitude of cell disruption and lipid extraction methods are available
which can be roughly divided in mechanical and nonmechanical methods. Never-
theless, depending on microorganism, scale, economics, and lipid application, the
method spectrum is narrowed to a few.

Cell disruption by mechanical methods is achieved by bead milling, high-
pressure homogenization, and ultrasound (Ochsenreither et al. 2016). Cell disruption
by nonmechanical methods is achieved by physical or chemical disruption methods.

Physical methods for disruption include decompression, osmotic shock, micro-
wave treatment, pulsed electrical fields, and (freeze)-drying, but, their scale-up is
limited for most of them.

Disruption by chemical methods includes the permeabilization by a variety of
chemicals such as antibiotics, chelating agents, chaotropes, detergents, solvents,
alkalis, and acids. Acid-catalyzed in situ transesterification which combines cell
disruption, lipid extraction, and transesterification to fatty acid methyl (FAME) or
ethyl (FAEE) esters has been used for biodiesel production. Cell disruption with lytic
enzymes, a process that can be carried out at mild reaction conditions, has been used
especially for oleaginous yeasts. The enzymatic treatment in combination with
solvent extraction, pressing, or ultrasound has been demonstrated for the lipid
extraction of microalgae. However, some chemical treatments are excluded in food
applications or require intensive downstream processing to eliminate them.

A direct application of solvents offers the possibility of combining cell disruption
and lipid extraction without further pretreatment, but the use of large amounts of
organic hazardous solvents, like chloroform and methanol or even less toxic one,
like hexane/isopropanol, is not always efficient since the cell walls of most micro-
organisms are usually impermeable to most solvents (Ochsenreither et al. 2016).

6 Metabolic Engineering Strategies for Producing
Microbial Oils

6.1 Genetic Engineering (Mutagenesis)

Improvement in the production of microbial oils involved the use of classical genetic
techniques, such as mutagenesis, together with genetic engineering (Liang and Jiang
2013; Gong et al. 2014; Ledesma-Amaro 2015; Shi and Zhao 2017). Despite the low
cost of genome sequencing, only few oleaginous yeasts genomes have been
sequenced. Therefore, genetic tools remain scarce or under development for this

Microbial Oils as Nutraceuticals and Animal Feeds 27



kind of yeast. Among them, only Y. lipolyticawas used as a model organism (Fickers
et al. 2005), so its genome was made public a few years ago, and many genetic tools
for its modification are available (Bredeweg et al. 2017; Dujon et al. 2004).

The first attempts at enhancing lipid accumulation were performed by modifica-
tion of the expression of key enzymes situated in the crossroads of metabolic routes.
In Y. lipolytica the increase of G3P pools by modifying gene expression of the
enzymes leading to its production and/or its degradation resulted in threefold
increase in lipid accumulation compared to the wild-type strain. The simultaneous
abolishment of the ß-oxidation gave rise to an obese yeast capable of accumulating
more than 80% of its cell dry weight in lipids (Beopoulos et al. 2008; Dulermo and
Nicaud 2011). In this organism, overexpression of the DGAT resulted in a great
increase of TAG content of the cells (Beopoulos et al. 2012; Silverman et al. 2016).

PUFAs are highly susceptible to oxygen radical attack, and the resulting oxidative
species are detrimental to cell metabolism and limit lipid productivity. Xu et al.
(2017) investigated cellular oxidative stress defense pathways in Y. lipolytica to
improve the lipid titer, yield, and productivity.

The oleaginous fungus M. alpina has been engineering for the production of
PUFAs (Sakuradani et al. 2013; Okuda et al. 2015; Shi et al. 2016; Kikukawa et al.
2016).

In microalgae, most of the studies of genetic engineering have targeted lipid
biosynthesis in order to enhance TAG accumulation. In several cases endogenous or
heterologous (from S. cerevisiae or C. reinhardtii) DGATs have been overexpressed
in different Nannochloropsis species (Beacham and Ali 2016; Iwai et al. 2015; Li
et al. 2016; Xin et al. 2017; Zienkiewicz et al. 2017; Wei et al. 2017a). Over-
expression of the endogenous DGAT1a-encoding gene in Nannochloropsis oceanica
resulted in a 39% increase in TAG content per cell, and RNAi repression resulted in a
20% decrease in TAG content per cell following N deprivation (Wei et al. 2017a).
Overexpression of the endogenous DGAT number 5 in N. oceanica resulted in a 3.5-
fold increase in TAG (Zienkiewicz et al. 2017). Furthermore, the DGAT number
7 has also been overexpressed in N. oceanica IMET1, resulting in 69 and 129%
increase in dry weight (DW) of TAG content under N-replete and N-deprived
conditions (Li et al. 2016). The overexpression of malonyl-CoA ACP transacylase
(MCAT) of N. oceanica IMET1 has been resulted in a 36% DW increase in lipids
(Chen et al. 2017).

Overexpression of malic enzyme in transgenic P. tricornutummarkedly increased
the total lipid content (Xue et al. 2015). A similar approach has been followed with
the green microalga Chlorella pyrenoidosa (Xue et al. 2016). P. tricornutum has
been engineered to accumulate DHA using the Δ5-elongase from the picoalga
Ostreococcus tauri (Hamilton et al. 2014, 2016). EPA was also produced by using
a similar method (Peng et al. 2014; Wang et al. 2017) that used a sequential
metabolic engineering strategy to overcome the metabolic bottlenecks in
P. tricornutum in order to overproduce ARA and DHA. For this purpose, the
malonyl-CoA acyl carrier protein transacylase and desaturase 5b were cloned and
coordinately expressed, increasing the production of ARA and DHA. Niu et al.
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(2013) have improved the neutral lipid and PUFAs biosynthesis by overexpressing a
type II diacylglycerol acyltransferase in P. tricornutum.

Escherichia coli could be an alternative fatty acid producer, since it has been
successfully used to generate many valuable platform chemicals and biofuels;
however, it is not an oleaginous microorganism, so its low yield of intracellular
lipids restricts its utility for lipid production. Nevertheless, E. coli has been genet-
ically engineered to increase its fatty acid biosynthesis (Lennen and Pfleger 2012;
Meng et al. 2011; Lee et al. 2014; Wu and San 2014; Cao et al. 2016; Xiao et al.
2018).

Some experiments have been performed in yeast to improve TAGs accumulation
by random mutagenesis using ultraviolet irradiation. One of these experiments was
carried out in Lipomyces starkeyi-selecting mutants by cerulenin, a compound
displaying inhibitory effects on lipid biosynthesis. This strategy resulted in an
increase in lipid productivity up to 31% (Tapia et al. 2012). The same procedure
was done in the oleaginous yeast Rhodosporidium toruloides, and the lipid produc-
tivity in this yeast was successfully improved (Yamada et al. 2017). UV mutagenesis
was also used to improve TAGs accumulation in the green microalgae Scenedesmus
obliquus. For this aim, starchless mutants were obtained in which TAG content
reached up to 49.4% DW (de Jaeger et al. 2014; Breuer et al. 2014).

6.2 Systems and Synthetic Biology

Increasingly, there are a number of studies that use various systems biology tools to
understand the metabolic switches in oleaginous microorganisms. However, their
applications to metabolic engineering of oleaginous microorganisms are still in their
infancy. Actually, studies on metabolic engineering of oleaginous microorganisms
often involve target screening processes which require extensive experimental works
(Silverman et al. 2016; Friedlander et al. 2016). Systems biology provides easier and
more efficient ways to guide metabolic engineering of oleaginous microorganisms.

In systems biology, both bottom-up and top-down approaches are central to
assemble information from all levels of biological pathways that must coordinate
physiological processes (de Lorenzo and Galperin 2009). The top-down approaches,
which are based on “omics” tools for high-throughput measurement of cellular
components, enable data-driven discovery of key players controlling the systems
and their interactions. Meanwhile, the bottom-up approaches employ predictive
mechanistic models developed based on existing knowledge to perform systematic
analysis of the cellular processes (Lee et al. 2005; Park and Lee 2008).

Studies using top-down approaches reveal that lipid accumulation in most oleag-
inous fungi is a consequence of reduced fluxes through central carbon metabolism
caused by nitrogen limitation. In contrast, for oleaginous bacteria, central carbon
metabolism is upregulated during nitrogen limitation together with activation of the
Kennedy pathway. The difference between oleaginous fungi and bacteria implies
that engineering of central carbon metabolism in oleaginous fungi to simulate the
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regulatory patterns in oleaginous bacteria would be an effective strategy for lipid
overproduction (Park et al. 2017).

Related to bottom-up approaches, genome-scale models of metabolism (GEMs)
and constraint-based modeling (CBM) methods are used to understand and engineer
microbial oil synthesis (Kavscek et al. 2015; Kerkhoven et al. 2016). A GEM is a
structured collection of all metabolic reactions that exist in the cell, which can be
built systematically using genome annotations and biochemical knowledge (O’Brien
et al. 2015).

Recently, reflecting the growing interests on oleaginous microorganisms, several
GEMs for oleaginous microorganisms have been published (Table 3). In general,
special attention to lipid-related pathways was made during the reconstruction.
Modeling results highlight that the pentose phosphate pathway is preferred for the
generation of NADPH in Y. lipolytica (Kavscek et al. 2015) and Candida tropicalis
(Mishra et al. 2016), while the malic enzyme is identified as a key node in the
regulation of NADPH regeneration in Mortierella alpina (Ye et al. 2015).

Although oleaGEMs have been used for understanding mechanisms of lipid
production and optimizing fermentation conditions, currently there is no report on
the use of oleaGEMs for metabolic engineering. During the past decade, various
computational strain design algorithms (CSOMs) have been developed, and majority
of them are looking for a design, which enables growth-coupled production of target
compounds (Maia et al. 2016). However, as oleaginous microbes produce lipids in
the nutrient-limited nongrowing phases, it is hard to apply existing CSOMs to
oleaGEMs for designing improved lipid producers. Furthermore, until a recent
date, there was no objective function suitable for predicting metabolic fluxes in the
nutrient-limited conditions (Park et al. 2017).

Synthetic biology emerged around the year 2000 as a new biological discipline,
and many different definitions have been applied to this field. However, one com-
monly used way to describe synthetic biology is as the design and construction of
new biological functions that are not found in nature (Serrano 2007).

Y. lipolytica was modified to secrete FAs by considering two synthetic
approaches, firstly where FAs are produced by enhancing the flux through neutral
lipid formation, as typically occurs in eukaryotic systems, and secondly by mimick-
ing the bacterial system to produce free FAs (Ledesma-Amaro et al. 2016).

TALEN (transcription activator-like effector nucleases)-based genome-editing
technology was applied to Y. lipolytica inducing targeted genome modifications.
This is an illustration of how a combination of molecular modeling and genome-
editing technology can offer novel opportunities to rationally engineer complex
systems for synthetic biology in order to obtain a significant increase of myristic
acid (C14) production (Rigouin et al. 2017).

Hayashi et al. (2016) have investigated in E. coli the biological function of the
tandem ACP domains in PUFA synthases to construct PUFA synthase derivatives
with less and more active ACP domains than the native enzyme and examined the
effects on PUFA productivity. Tee et al. (2014) developed in E. coli a rational strain
design process in systems biology, an integrated computational and experimental
approach for carboxylic acid production, as an alternative method.
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Table 3 Metabolic maps at genomic scale of some oleaginous fungi, bacteria, and microalgae

Organism GSM model Reference

Fungi

Yarrowia lipolytica iNL895
2002 reactions
1847 metabolites
895 genes

Loira et al. 2012

Yarrowia lipolytica iYL619_PCP
1142 reactions
843 metabolites
619 genes

Pan and Hua 2012

Yarrowia lipolytica iMK735
1336 reactions
1111 metabolites
735 genes

Kavscek et al. 2015

Yarrowia lipolytica W29 iYALI4
1942 reactions
1691 metabolites
847 genes

Kerkhoven et al. 2016

Yarrowia lipolytica iYLI647
1347 reactions
1119 metabolites
647 genes

Mishra et al. 2018

Yarrowia lipolytica iYL_2.0
1471 reactions
1083 metabolites
645 genes

Wei et al. 2017b

Candida tropicalis iCT646
945 reactions
712 metabolites
646 genes

Mishra et al. 2016

Mucor circinelloides iWV1213
1326 reactions
1413 metabolites 1213
genes

Vongsangnak et al. 2016

Mortierella alpina iCY1106
1854 reactions
1732 metabolites
1106 genes

Ye et al. 2015

Gram-positive bacteria

Rhodococcus jostii RHA1 iMT1174
1935 reactions
1243 metabolites 1174 genes

Tajparast and Frigon 2015

Cyanobacteria

Synechocystis sp. PCC iJN678
863 reactions
795 metabolites
678 genes

Nogales et al. 2012

Synechocystis sp. PCC 6803 iSyn731
1156 reactions

Saha et al. 2012

(continued)
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Table 3 (continued)

Organism GSM model Reference

996 metabolites
731 genes

Cyanothece sp. ATCC 51142 iCce806
667 reactions
587 metabolites
806 genes

Vu et al. 2012

Cyanothece sp. iCyt773
946 reactions
811 metabolites
773 genes

Saha et al. 2012

Chlorella vulgaris UTEX 395 iCZ843
2294 reactions
1770 metabolites
843 genes

Zuñiga et al. 2016

Synechococcus sp. PCC 7002 iSyp728
742 reactions
754 metabolites
728 genes

Hendry et al. 2016

Synechococcus elongatus
PCC7942

iSyf715
851 reactions
838 metabolites
715 genes

Triana et al. 2014

Synechococcus 2973 iSyu683
1178 reactions
1028 metabolites
683 genes

Mueller et al. 2017

Synechococcus sp. PCC 7002 iSyp611
552 reactions
542 metabolites
611 genes

Hamilton and Reed 2012

Synechococcus sp. PCC 7002 iSyp708
746 reactions
581 metabolites
702 genes

Vu et al. 2013

Microalgae

Chlamydomonas reinhardtii iRC1080
2190 reactions
1068 metabolites
1080 genes

Chang et al. 2011

AlgaGEM
Chlamydomonas reinhardtii

AlgaGEM
1725 reactions
1862 metabolites
866 genes

Dal’Molin et al. 2011

Chlamydomonas reinhardtii iCre1355
2394 reactions
1133 metabolites
1355 genes

Imam et al. 2015

(continued)
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7 Research Needs

PUFAs have many health benefits and are essential for supporting the development
of children. Although several microorganisms produce PUFAs naturally, native
microorganisms frequently have low growth rates and produce low yields of these
FAs, which are usually far below the desirable level to be commercially industrial-
ized. Therefore, it is required to increase the research efforts to modify these
microorganisms through metabolic engineering to accumulate higher amounts of
lipids enriched in the desired FAs demanded by the industry. Additionally, these
microorganisms should be further engineered to release the synthetized FAs to the
culture medium, to facilitate the downstream processing. Metabolic engineering has
the potential not only to improve yields but also to generate novel sources of PUFAs
from food-grade microorganisms.

The SCO production cost depends mainly upon the species chosen for cultiva-
tion, lipid concentration within cells, and the concentration of cells produced. On the
first sense, more screening efforts should be done to increase the number of available
oleaginous microorganisms. Concerning lipid concentration, the overall yield and
productivity of SCOs is normally constrained by different metabolic and regulatory
bottlenecks. Thus, systems biology should contribute to proposing metabolic alter-
natives that can be further implemented by using novel synthetic biological tools.
Different strategies such as limiting the acyl exchange of intermediates, increasing
the metabolic flux toward the products, enhancing precursors supply, and reducing
the use of precursors and end products by competing pathways should be the targets
to alleviate some of the bottlenecks. The use of heterologous enzymes such as
acyltransferases, desaturases, elongases, and others will allow to better control the
fluxes. Synthetic biology will contribute to redesigning gene clusters and pathways
by chemically synthesizing them with optimized codons, promoters, or intergenic
sequences, to facilitate their heterologous expression in the most productive micro-
bial hosts. In fact, the integration of classical genetic, metabolic and protein

Table 3 (continued)

Organism GSM model Reference

Chlorella variabilis iAJ526
1455 reactions
1236 metabolites
526 genes

Juneja et al. 2016

Phaeodactylum tricornutum iLB1027
4456 reactions
2172 metabolites
1027 genes

Levering et al. 2016

Nannochloropsis salina iNS934
2345 reactions
1985 metabolites
934 genes

Loira et al. 2016
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engineering, system biology, synthetic biology, and evolutionary engineering, rec-
ognized as the new field of systems metabolic engineering, has been suggested some
years ago as a global approach to increase the FA production in the oleaginous
microorganism (Tee et al. 2014).

From commercial and industrial standpoints, it is important to reduce operating
costs. In this sense, developing fermentation procedures using low-cost media and
efficient product separation processes can lower operating costs. Even with a high
level of productivity, SCOs are too expensive to compete with chemical (lubricants)
or commodity (biofuels) products. This explains why industrial developments are
focused on the high-value products as PUFAs for dietary supplements and for infant
nutrition (Thevenieau and Nicaud 2013). Nevertheless, the use of renewable sub-
strates must also be considered as an ecological added value. Organic waste can be
used to grow oleaginous microorganisms to be converted into PUFAs decreasing the
final price of the product, in a biorefinery concept (Huang et al. 2013; Béligon et al.
2016). The endogenous production of FAs can reduce cell viability due to the loss of
inner membrane integrity (Lennen et al. 2011), and thus the secretion of endogenous
FAs could moderate the toxicity effect while reducing product extraction costs
(Ledesma-Amaro et al. 2016).
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