Statistical Models with Regularization in Pure Julia
Switch branches/tags
Nothing to show
Clone or download
joshday Merge pull request #19 from Evizero/aggmode
update AvgMode deprecation
Latest commit 2fdfa3b Sep 13, 2018
Permalink
Failed to load latest commit information.
docs Fix deprecations Aug 8, 2018
src update AvgMode deprecation Sep 13, 2018
test updates for Julia 0.7 Aug 8, 2018
.gitignore try documenter Jul 5, 2017
.travis.yml fix travis script Aug 8, 2018
LICENSE.md name change Mar 5, 2016
README.md updates for Julia 0.7 Aug 8, 2018
REQUIRE update AvgMode deprecation Sep 13, 2018
appveyor.yml updates for Julia 0.7 Aug 8, 2018

README.md

Documentation Master Build Test Coverage
Build Status Build status codecov

SparseRegression

This package relies on primitives defined in the JuliaML ecosystem to implement high-performance algorithms for linear models which often produce sparsity in the coefficients.

  • Install with Pkg.clone("https://github.com/joshday/SparseRegression.jl")
using SparseRegression

x = randn(10_000, 50)
y = x * range(-1, stop=1, length=50) + randn(10_000)

s = SModel(x, y, L2DistLoss(), L2Penalty())
@time learn!(s)
s