
Particle flow: 
refactoring and ML

Joosep Pata
October 7, 2019 

PF ML discussion



Goals
• Physics: Improve offline particle flow for interpretability, extensibility, 

code readability in RecoParticleFlow/PFProducer 

• Make it possible to include additional information in the reconstruction 

• Understand what the algorithm is doing and if it degrades, why? 

• Match or exceed the existing performance 

• Unify with HGCAL reconstruction 

• Computing: improve timing of PF, enable PF algorithm to run on 
accelerators 

• My interest in this: refactoring pledge for PF group, understand and 
possibly improve basic CMS offline reco 

2



Problem statement
• Given the set PFBlockElements in the event, create a set of PFCandidates 

• On the event level, set(N) to set(M) translation, but can be factorized 

• Block algo: find which elements MUST be considered together to 
produce consistent and physically meaningful candidates 

• clustering with supervision by existing PFAlgo 

• Candidate algo: given a small set of connected elements, produce PF 
candidates 

• {TRK, ECAL} → pion, 

• {TRK, ECAL, HCAL} → K 

• Ultimately interested in elements → genParticles, but start with 
PFCandidates, PFAlgo should be kept for a while in any case 

3



What we have
• From CMSSW AOD, can dump std::vector<reco::PFBlock>, 

std::vector<reco::PFCandidate>, std::vector<reco::GenParticle> 

• PFBlock consists of elements of different types 

• in standard CMSSW, most of the event is in just two blocks: eta+ 
and eta- 

• For each PFCandidate, we know the elements that were used to 
produce this candidate: edges of the graph with elements, candidates 
as nodes 

• Multiple elements can be associated to the same candidate, and 
multiple candidates to the same element! 

• We can look for elements that are disjoint subgraphs (miniblocks) as 
induced by PFAlgo based on PFCandidate::elementsInBlock

4



5



Miniblocks from PFAlgo

6

• 92% of the subblocks consist of 1 or two elements (per PFAlgo) 

• Event could be significantly cleaned up by looking for tracks, ECAL 
& HCAL elements that cannot reasonably linked to 0 or 1 other 
elements

1 - TRK, 4 - ECAL, 5 - HCAL

H
F

TR
K+

H
C

AL

TR
K+

EC
AL

EC
AL

TR
K

simple blocks



Dataset

7

input per event:
set of elements 𝔢={ , ,...}

output per event:
set of candidates 𝖈={ ,...}

blocks

~O(5000) ~O(2500)

ECAL
HCAL ~O(2000)

Inside a miniblock, there is no further granularity between 
candidates and elements. Typical case: one HCAL cluster 

shared by several tracks, produce several candidates.



Dataset, numerically

8

• elements = (N_elem, N_feat_elem) 

• list of all input elements (energy, eta, phi, track coordinates); ~5k 
elements per event 

• element_block_id = (N_elem, 1) 

• unique block ID for each element based on PFAlgo; ~2k different 
blocks 

• candidates = (Ncand, Nfeat_cand) 

• list of all candidates (pdgid, pt, eta, phi); 2.5k candidates per event 

• candidate_block_id = (N_cand, 1) 

• unique block ID for each candidate based on PFAlgo as above



Baseline algo
• Define inputs, outputs, "loss function", compare to ML solution 

• particleflow(elements) → candidates 

• cluster(elements) → blocks: create blocks using clustering, 
e.g. DBSCAN, 2d grid scan 

• Needs to estimate elem-to-elem distance matrix (KD-tree) 

• Clustering loss can be monitored using labelled clustering 
metrics e.g. adjusted_mutual_info_score in sklearn 

• reconstruct(block) → candidates: translate each block 
into a small number of candidates 

• true candidates to reco candidates loss by e.g. MSE
9



ML ideas
• Elements to blocks 

• clustering with optional supervision by PFAlgo 

• Create initial neighbor map using approximate distance matrix 

• Turn edges on or off in a graph based on neighbours 

• Block to candidates 

• simple regression on a few elements to a few candidates 

• Can try independently of above based on PFAlgo-induced 
miniblocks

10



Further ML ideas

• pix2pix: translate a multi-channel image of elements to an image 
of candidates/genparticles with a GAN 

• Convolutions can be helpful, as reconstruction should 
generally be local 

• Sets: Learn to encode/decode permutation invariant functions 
of the inputs/outputs

11



Code and samples
• /RelValTTbar_13/CMSSW_11_0_0_pre6-PU25ns_110X_upgrade2018_realistic_v3-v1/

GEN-SIM-DIGI-RAW samples processed, 9k events 

• EDM: /mnt/hadoop/store/user/jpata/RelValTTbar_13/pfvalidation/
191004_163947/0000/step3_AOD*.root 

• ROOT: /storage/user/jpata/particleflow/data/TTbar/191007_162300/
step3_AOD_*.root 

• npz: /storage/user/jpata/particleflow/data/TTbar/191007_162300/
step3_AOD_*.npz 

• https://github.com/jpata/particleflow 

• EDM → flat ROOT ntuplization 

• flat ROOT → numpy ntuplization, miniblock finding via subgraphs 

• Example notebooks, discussion
12

https://github.com/jpata/particleflow

