A naive, purely relational interpreter for the SKI Combinator Calculus, written in miniKanren.
This project is developed on Arch Linux against Chez Scheme v9.4-1, and the copy of Will Byrd's miniKanren-with-symbolic-constraints included in this repository. It has not been tested under any other configuration.
$ git clone [this-repository]
$ cd [repo-directory]
$ [launch Chez Scheme]
> (load "skio.scm")
skio
interprets input expressions regardless of parenthesization, converting them to left-associative normal form if necessary, and is best used for forward evaluation.
skio-syn
elides the left-associativity preprocessor, thus requiring fully parenthesized input expressions, to allow for greater variety during reverse expression synthesis.
laso
converts expressions to their fully left-associative, parenthesized forms.
io
, ko
, and so
each perform a single step of the eponymous reduction on fully left-associative expressions; useful for checking manual derivations.
An input expression is a quoted (potentially nested) list of symbols, including the reserved symbols S
, K
, and I
.
For both skio
and skio-syn
, the number of results requested must be included, e.g. (skio EXP NUM)
. Because the evaluation order of miniKanren is unspecified, the most reduced answer may not be the first produced, especially for expressions which simulate recursion. However, if an answer exists, then their exists a NUM
value large enough such that the result set will include it.
> (skio '(S I I a) 1)
((a a))
> (skio '(S I I (S I I)) 1)
((((S I) I) ((S I) I)))
> (skio '(S (K a) (S I I) b) 1)
((a (b b)))
> (define beta '(S (K a) (S I I)))
> beta
(S (K a) (S I I))
> (define exp (list 'S 'I 'I beta))
> exp
(S I I (S (K a) (S I I)))
> (skio exp 3)
((((S I) I) ((S (K a)) ((S I) I)))
(((S I) I) ((S (K a)) ((S I) I)))
(((S (K a)) ((S I) I)) ((S (K a)) ((S I) I))))
> (skio-syn 'a 10)
(a
(I a)
((K a) _.0)
(I (I a))
(I ((K a) _.0))
((K (I a)) _.0)
(I (I (I a)))
((K ((K a) _.0)) _.1)
(I (I ((K a) _.0)))
(((S K) _.0) a))