
LLNL-PRES-812809

JPype
A Python to Java

Bridge
Karl Einar Nelson

1

LLNL-PRES-812809

Auspices
This work was produced under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor Lawrence
Livermore National Security, LLC, nor any of their employees makes any warranty,
expressed or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned
rights.

Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or Lawrence Livermore National
Security, LLC, and shall not be used for advertising or product endorsement
purposes.

2

LLNL-PRES-812809

History of JPype

• 2004 -2007 JPype development began by Steve
Menard and hosted by Sourceforge.

• 2012 Luis Nell transfers source control to Git to begin
development and becomes the maintainer with project
hosted on Github.

• 2013 A fork by Thomas Calmant begun to focus on
Python 3 support.

• 2014-2015 A group of users lead by Martin K. Scherer
rewrote JPype to create bindings for Python 3.

• 2017 Karl E. Nelson joins to rewrite core technology to
improve memory usage, speed, maintainability.

• 2020 All core work completed with release of 1.0.

3

LLNL-PRES-812809

Purpose

Provide complete access to Java libraries and syntax
as Python modules for use by Python developers.
Intended audience is scientific and engineering
programmers who need to freely mix libraries from
Python and Java.

4

LLNL-PRES-812809

License

JPype is licensed under Apache License v2
which allows the licensee to:
• copy, modify and distribute the covered software in source

and/or binary forms
• exercise patent rights that would normally only extend to

the licensor provided that:
• all copies, modified or unmodified, are accompanied by a copy of

the license
• all modifications are clearly marked as being the work of the

modifier
• all notices of copyright, trademark and patent rights are reproduced

accurately in distributed copies
• the licensee does not use any trademarks that belong to the

licensor.

5

LLNL-PRES-812809

Project status
• JPype is a community maintained open source project with one

maintainer (Martin K. Scherer) and one developer (Karl E.
Nelson).

• Karl E. Nelson is a senior scientist at Lawrence Livermore National
Laboratory and develops JPype in his personal time.
• Karl is a government contractor and cannot receive compensation for

his JPype work under conflict of interest rules.
• LLNL sponsors this project by providing equipment (computers)

its development. LLNL neither warrantees nor endorses JPype.
• JPype is fully functionally, though additional advanced features

such as a “reverse” bridge (Java calling Python) are still under
development.

• No commercial support is currently available for JPype but the
developer and maintainer frequently answer questions, resolve
issues, and enhance features as requested by the community.

6

LLNL-PRES-812809

Features

• Provides Java syntax at defined in the Java specification
for method resolution and return types.

• All returns except for null (None), True, and False
produce a Java “wrapper” which acts as a handle to a
Java object.

• Introduces strong typing to Python for working with
Java.

• Direct importation of Java classes as Python modules
without modification of the Java source.

• Each wrapper is a fully functional natively implemented
Python type for speed.

• Class wrappers can by customized using Python
decorators on ordinary Python class.

7

LLNL-PRES-812809

Actively maintained alternatives
Alternative Advantages Disadvantage

Jython Provides a complete Python 2
implementation in Java.

Poor support for using CPython libraries. Losses
much of the advantages of Python. Nearing end of
lifespan, currently being rebooted.

PyJnius Focused on providing support for
Android. Actively supported.

Missing many basic features for use in scientific
development such as multidimensional array
support.

Py4J Remote protocol for controlling the
JVM from Python. Multiple JVMs
can be spawned and controlled.

Remote operation requires a lot of wrapping to
provide a native like access for a Java library.

Only JPype and PyJnius are in the realm of providing forward bridges with
transparent presentation of Java syntax in Python, though some of the earlier
libraries may also be useful (Jpy, Jep, Javabridge).

Alternatives such as automatic generation of JNI stubs (JCC) may be better for an
application than a bridge code depending on the level of access to be provided.

8

LLNL-PRES-812809

Documentation resources

JPype provides
• A userguide showing usage of each of the JPype

features and details on type conversion.
• A quickstart guide to define how to translate Java

to Python syntax.
• An installation guide and debugging instructions for

handling installation on ordinary and challenging
systems.

• A developer guide with technical discussion in case
Karl is run over by a bus or retires to mountains.

9

LLNL-PRES-812809

Key syntax concepts
• Python is a dictionary based language, but not every Java syntax

can be represented directly. Representing Java’s strong typing in
Python requires adding concepts such as casting to Python.

• Wherever there is a naming conflict, a trailing underscore is
added.

• Java libraries should not use leading or trailing underscores for
names to prevent conflicts with Python syntax.

• Most Java code can just be cut and paste into Python simply by
dropping the declaration and new statements.

Concept Java Python

Casting from to a Java type (MyObject) obj; MyObject@obj

Declaring an array type Class A = MyObject[].class; A = MyObject[:]

Creating an array MyObject[] a = new MyObject[5]; a = MyObject[5]

Access class via reflection Class C = MyObject.class; C = MyObject.class_

10

LLNL-PRES-812809

Proxies
• A proxy is a Python object

masquerading as a Java object.
• Proxies implement a Java interface

which gives them an identity of
how to be treated in Java.

• Proxies can be implemented either
by decorating an ordinary class or
by wrapping an existing object with
JProxy.

• Any Python object can be held as a
Java object by wrapping it as
“Serializable” interface.

CREATE A PROXY CLASS:
@Jimplement(Consumer)
class MyConsumer:

def accept(self, obj):
pass

ja = MyConsumer()

MAKE AN EXISTING OBJECT
INTO A PROXY:

a=MyPythonObject()
ja = JProxy(Serializable, inst=a)

11

LLNL-PRES-812809

Memory linkage model
• Each Python wrapper acts as a

handle to a Java object and holds a
reference.

• Multiple handles can exist for one
Java object so each return produces
a new handle.

• Python objects can be held in Java
space as “Proxies” which implement
a Java interface.

• Java proxies hold a reference back
to the Python object so that they
cannot be lost while Java is using it.

• When a Java proxy is held in Python
space it is a “weak” reference to

• Garbage collectors are “linked” such
that operation of one will
conditionally trigger the other.

Python
wrapper

Java
Object

Python
wrapper

Strong
reference

Java
Proxy

Python
Object

Strong
reference

Weak
reference

12

LLNL-PRES-812809

Feature comparison with PyJnius
Feature JPype PyJnius

Provides access to Python class and objects  
Linked memory management model 
Handles Java arrays as native objects (single/multidimension) 
Handles Java buffers as native objects (memoryview) 
Support of serialization of Java and Python objects (Pickling) 
Access to Javadoc and function prototype stubs in Python 
Python can implement Java interfaces (Proxies)  
Support for Numpy, Matplotlib, and other scientific Python
libraries



Customization of Java classes to give Python native syntax  
Support for Android 

13

LLNL-PRES-812809

Speed
• Speed is not the primary focus of JPype as ease of use, code

maintainability, and providing complete features are considered
higher priorities.

• JPype interface layer was written in Python until Spring 2020 and
was ported to CPython natives improving speed by factors of 3 to
300 depending on the operation. Older benchmarks should be
disregarded.

• JPype has implemented an advanced method dispatch algorithm
to boost speeds when disambiguating overloaded Java methods
from Python.

Operation JPype PyJnius
Insert integer in ArrayList 2.24 μs 4.62 μs
Iterate each element of ArrayList 4.66 μs 4.32 μs
Access each element with get() 3.35 μs 6.76 μs

Benchmarking performed on JPype 1.0.1 with speed patch and PyJnius 1.3.0 on an older model laptop.

14

LLNL-PRES-812809

Customizers to give native Python feel

• To keep Java objects from standing out as being
different from Python objects, a customizer can be
defined for Java classes or interfaces.

• Customizers are declared as Python decorators
applied to ordinary Python classes.

• JPype will “steal” the methods from this class and
add these native Python methods to the Java
wrapper.

• This can be used to make Java classes obey Python
syntax such as “with”, “for”, array access, slicing,
and list comprehension.

15

LLNL-PRES-812809

Java slots
• JPype needs to extend many different Python types such as

Object, Exception, String, Long, and Float which have
different memory layouts.

• Python does not provide a way to add additional native slots
nor use multiple inherence on native CPython objects.

• To allow extension CPython objects with multiple memory
layouts, JPype overrides the Python memory management
system and adds extra memory on Python objects with Java
components.

• The new “Java slot” can be resolved in O(1) time providing
the extra space needed to store Java data in a Python class
and object.

• This approach prevents use of JPype in PyPy as it is specific
to CPython.

16

LLNL-PRES-812809

Limitations
• The JVM and Python virtual machine are linked at the

process level.
• It is not possible to stop and restart the JVM.
• It is not possible to spawn a second JVM copy.

• It is possible programmatically to create an
unresolvable reference loop as Python and Java cannot
see each others memory space.
• Python containers holding Java objects should not be

wrapped as Proxies.

• Extension of Java classes are not currently possible,
thus Java libraries that are designed to require
extension of may be limited in use.

• Java can only call Python code through Java interfaces.

17

LLNL-PRES-812809

Technology Overview

18

JPype ModulePython

Language Layer

_JPype ModuleC++/CPython

Function

CommonC++/JNI

org.jpypeJava

Presents API and provides hooks
for customization. (jpype)

Provides base classes and Java slots.
Provides all special Python methods.
Handles all entry point defense.
(native/python)

Method resolution, array access, type
conversions. (native/common)

Utility functions and services.
(native/java)

Everything is exposed to Python except for Common, the C++ backend.

LLNL-PRES-812809

Major JPype components

19

Unit Language Function

JPype Context Java/C++ Global resource to serve as a gatekeeper for all
Java services.

TypeManager Java Creates C++ backend classes as requested and
creates method resolution order cache.

PackageManager Java Provides name lookup for Java packages to
determine if a resource is a package or class.

ReferenceQueue Java Holds references for Python objects and memory
buffers so that Python object are constrained to
Java lifespans.

Dynamic
Classloader

Java Dynamically loads Java classes after JVM is
started and bootstraps JPype class loading.

Javadoc Extractor Java Translates Javadoc to RST on demand.

LLNL-PRES-812809

Effective use of Python with JPype
• Minimize the number of times that data needs to be

passed across the interface.
• If the same array is passed multiple times as a Java array

convert it once.
• Don’t force conversion of Python type on return unless

required. JPype classes duck type to Python so in many cases
it is not necessary.

• Defining a custom conversion keyed off of Python
protocol can keep from needed lots of casting and
adapters in the user code.

• Add class customizers for interface or specific concrete
classes to present a friendly Python API.

• If a Java class needs to be split into different pieces to
match Python conventions, then build Python objects
that are views which delegate to Java object.

20

LLNL-PRES-812809

Effective coding in Java to use JPype
Good practices in Java will result in more usable Python wrappers.
• Separate data and algorithm classes.
• Use design patterns philosophy to present common concepts.
• Define input and output classes rather then using ordering on raw arrays to pass

parameters and returns.
• Access data through accessors rather than fields.
• Make generous use of interfaces

• Expose the API as interface views rather than concrete classes.
• Avoid forcing concrete types for parameters, but instead accept an interface or the least

derived container type.
• Move common concepts to interfaces which can be customized once in Python.

• Reuse existing Java interfaces
• Use AutoCloseable for resources that need a defined lifespan that can be used in Python

“with” statement.
• Make use of standard collection interfaces which will automatically produce Python

collection syntax.

• Don’t overload two methods which do different things. Avoid methods like
java.util.List.remove() where one overload is remove by position and another is
remove by search.

21

LLNL-PRES-812809

Credits
JPype is a community
effort!
Developers
• Steve Menard
• Karl Einar Nelson

Maintainers
• Luis Nell
• Martin K. Scherer

Artwork
• Athena Nelson

Community contributors
• Bastian Bowe
• Kristi
• Thomas Calmant
• lazerscience
• Koblaid
• Michael Willis (michaelwillis)
• awesomescot
• Joe Quant (joequant)
• Mario Rodas
• David Moss
• Stepan Kolesnik
• Philip Smith
• Dongwon Shin
• rbprogrammer

22

