Skip to content
Asynchronous, synchronous and RPC (TF) FID calculation.
Python Shell
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
datasets @ 193fb4d
docker
fid
imgs
tests
.gitignore
.gitmodules
.travis.yml
LICENSE
README.md
client.py
server.py

README.md

async_fid

Asynchronous, Synchronous and RPC (TF) FID calculation helpers. This repo extends the code that was generously written by 1 and 2 while providing some nice extras & a cleaner interface and the ability to send your FID calculation to a remote server for calculation!

Client-Server Solution

PyRPC Server Setup

The simplest way to get started is replace <MY_HOST_DATASET_DIR> to the place you want to store the datasets and and run the following command on the server (note datasets are mostly auto-downloaded, except for Imagenet / Celeb-A):

nvidia-docker run -p 8000:8000 -u $(id -u):$(id -g) \
                               --ipc=host -v <MY_HOST_DATASET_DIR>:/datasets \
                               -e NVIDIA_VISIBLE_DEVICES=0 \
                               -it jramapuram/fid-server-tensorflow:1.14.0-gpu-py3  # GPU version

# or if you want the CPU version:
docker run -p 8000:8000 -u $(id -u):$(id -g) \
                        --ipc=host -v <MY_HOST_DATASET_DIR>:/datasets \
                        -it jramapuram/fid-server-tensorflow:1.14.0-py3  # CPU version

PyRPC Client Setup

Posting messages to a remote FID-computing server is simple!

from client import FIDClient

# be sure to fill out host & port below with your server's IP / hostname
fid = FIDClient(host, port, normalize_imgs=True, force_cpu=False)
fid.add_dataset(task='mnist', data_dir='./datasets/mnist') # add a dataset

def do_something_with_fid(fid_value):
  # save to disk? post to tensorboard / visdom
  # treat fid_value as a simple python float

# calculate fid for random data, this function instantly returns so you can continue training :D
# do_something_with_fid is triggered from the remote when it is completed and is run asynchronously here.
fid.post(fake_images=np.random.rand(10000, 28, 28, 1), 
         do_something_with_fid, dataset_str='mnist')

(See tests/test_client_to_server.py for an end-to-end example.)

Non Client-Server Solution

Sync-Tests

To test the sync version run python -m unittest tests/test_sync.py (or ./docker/run.sh "python -m unittest tests/test_sync.py" to use the pre-baked container), here are the results for some typical datasets:

[mnist]
        FID for random data vs. test-set : 419.81745204835573.
        FID for test-set vs. test-set : 2.000466499576364e-05
...

[permuted] # actually is doing permuted-mnist
        FID for random data vs. test-set : 336.31173076137065.
        FID for test-set vs. test-set : 1.149141822937758e-05
...

[fashion]
        FID for random data vs. test-set : 402.12138184169527.
        FID for test-set vs. test-set : 7.3852093285004855e-06
...

[cifar10]
        FID for random data vs. test-set : 415.6104467123265.
        FID for test-set vs. test-set : 0.23097138537141707
...

[cifar100]
        FID for random data vs. test-set : 423.52608082034476.
        FID for test-set vs. test-set : 0.27762879099949245
...

[svhn_full]
        FID for random data vs. test-set : 411.5628830393524.
        FID for test-set vs. test-set : 4.3500883367190895
...

[svhn_centered]
        FID for random data vs. test-set : 393.96311903676656.
        FID for test-set vs. test-set : 9.076697602166995
...

[binarized_mnist]
        FID for random data vs. test-set : 446.37204352094204.
        FID for test-set vs. test-set : 3.524291969370097e-12
...

[binarized_omniglot]
        FID for random data vs. test-set : 440.3752313180992.
        FID for test-set vs. test-set : 0.0034667244183284635
...

[binarized_omniglot_burda]
        FID for random data vs. test-set : 400.55568682515616.
        FID for test-set vs. test-set : 0.2629414960831542
...

[celeba]
        FID for random data vs. test-set : 454.7212195100483.
        FID for test-set vs. test-set : 1.2387706087668702
...

[image_folder] # evaluating 32x32 imagenet raw imgs
        FID for random data vs. test-set : 425.07742193926936.
        FID for test-set vs. test-set : 5.2435325640107235

Async-Tests

Similarly to the sync solution run :

mv tests/test_async.py . # python -m unittest throws an error due to pickling lambdas for multiprocess stuff.
python test_async.py # (or ./docker/run.sh python test_async.py)
You can’t perform that action at this time.