Skip to content

jsontypedef/json-typedef-ruby

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
bin
 
 
lib
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

jtd: JSON Validation for Ruby

Gem

jtd is a Ruby implementation of JSON Type Definition, a schema language for JSON. jtd primarily gives you two things:

  1. Validating input data against JSON Typedef schemas.
  2. A Ruby representation of JSON Typedef schemas.

With this package, you can add JSON Typedef-powered validation to your application, or you can build your own tooling on top of JSON Type Definition.

Installation

You can install this package with gem:

gem install jtd

Documentation

Detailed API documentation is available online at:

https://rubydoc.info/gems/jtd/JTD

For more high-level documentation about JSON Typedef in general, or JSON Typedef in combination with Python in particular, see:

Basic Usage

For a more detailed tutorial and guidance on how to integrate jtd in your application, see "Validating JSON in Ruby with JSON Typedef" in the JSON Typedef docs.

Here's an example of how you can use this package to validate JSON data against a JSON Typedef schema:

require 'jtd'

schema = JTD::Schema.from_hash({
  'properties' => {
    'name' => { 'type' => 'string' },
    'age' => { 'type' => 'uint32' },
    'phones' => {
      'elements' => {
        'type' => 'string'
      }
    }
  }
})

# JTD::validate returns an array of validation errors. If there were no problems
# with the input, it returns an empty array.

# Outputs: []
p JTD::validate(schema, {
  'name' => 'John Doe',
  'age' => 43,
  'phones' => ['+44 1234567', '+44 2345678'],
})

# This next input has three problems with it:
#
# 1. It's missing "name", which is a required property.
# 2. "age" is a string, but it should be an integer.
# 3. "phones[1]" is a number, but it should be a string.
#
# Each of those errors corresponds to one of the errors returned by validate.

# Outputs:
#
# [
#   #<struct JTD::ValidationError
#     instance_path=[],
#     schema_path=["properties", "name"]
#   >,
#   #<struct JTD::ValidationError
#     instance_path=["age"],
#     schema_path=["properties", "age", "type"]
#   >,
#   #<struct JTD::ValidationError
#     instance_path=["phones", "1"],
#     schema_path=["properties", "phones", "elements", "type"]
#   >
# ]
p JTD::validate(schema, {
  'age' => '43',
  'phones' => ['+44 1234567', 442345678],
})

Advanced Usage: Limiting Errors Returned

By default, JTD::validate returns every error it finds. If you just care about whether there are any errors at all, or if you can't show more than some number of errors, then you can get better performance out of JTD::validate using the max_errors option.

For example, taking the same example from before, but limiting it to 1 error, we get:

# Outputs:
#
# [#<struct JTD::ValidationError instance_path=[], schema_path=["properties", "name"]>]
options = JTD::ValidationOptions.new(max_errors: 1)
p JTD::validate(schema, {
  'age' => '43',
  'phones' => ['+44 1234567', 442345678],
}, options)

Advanced Usage: Handling Untrusted Schemas

If you want to run jtd against a schema that you don't trust, then you should:

  1. Ensure the schema is well-formed, using the #verify method on JTD::Schema. That will check things like making sure all refs have corresponding definitions.

  2. Call JTD::validate with the max_depth option. JSON Typedef lets you write recursive schemas -- if you're evaluating against untrusted schemas, you might go into an infinite loop when evaluating against a malicious input, such as this one:

    {
      "ref": "loop",
      "definitions": {
        "loop": {
          "ref": "loop"
        }
      }
    }

    The max_depth option tells JTD::validate how many refs to follow recursively before giving up and raising JTD::MaxDepthExceededError.

Here's an example of how you can use jtd to evaluate data against an untrusted schema:

require 'jtd'

# validate_untrusted returns true if `data` satisfies `schema`, and false if it
# does not. Throws an error if `schema` is invalid, or if validation goes in an
# infinite loop.
def validate_untrusted(schema, data)
  schema.verify()

  # You should tune max_depth to be high enough that most legitimate schemas
  # evaluate without errors, but low enough that an attacker cannot cause a
  # denial of service attack.
  options = JTD::ValidationOptions.new(max_depth: 32)
  JTD::validate(schema, data, options).empty?
end

# Returns true
validate_untrusted(JTD::Schema.from_hash({ 'type' => 'string' }), 'foo')

# Returns false
validate_untrusted(JTD::Schema.from_hash({ 'type' => 'string' }), nil)

# Raises ArgumentError (invalid type: nonsense)
validate_untrusted(JTD::Schema.from_hash({ 'type' => 'nonsense' }), 'foo')

# Raises JTD::MaxDepthExceededError (max depth exceeded during JTD::validate)
validate_untrusted(JTD::Schema.from_hash({
  'definitions' => {
    'loop' => { 'ref' => 'loop' },
  },
  'ref' => 'loop',
}), nil)

About

A Ruby implementation of JSON Type Definition

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published