Skip to content
Permalink
Branch: master
Find file Copy path
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
228 lines (177 sloc) 6.62 KB
import sys, getopt
import cv2
import numpy as np
import time
import os
from datetime import datetime
def get_angle(hand,centre):
x_h=hand[0]
y_h=hand[1]
x_c=centre[0]
y_c=centre[1]
x_diff=x_h-x_c
y_diff=y_h-y_c
x_diff=float(x_diff)
y_diff=float(y_diff)
if(x_diff*y_diff>0):
if(x_diff>=0 and y_diff>0):
angle=np.pi-np.arctan(x_diff/y_diff)
elif(x_diff<=0 and y_diff<0):
angle=2*np.pi-np.arctan(x_diff/y_diff)
elif(x_diff*y_diff<0):
if(y_diff>=0 and x_diff<0):
angle=(3*np.pi)/4+np.arctan(x_diff/y_diff)
elif(y_diff<=0 and x_diff>0):
angle=-np.arctan(x_diff/y_diff)
return angle
def dist_2_pts(x1, y1, x2, y2):
return np.sqrt((x2 - x1)**2 + (y2 - y1)**2)
def calibrate_gauge(inputfile):
img = cv2.imread(inputfile)
height, width = img.shape[:2]
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #convert to gray
circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 20, np.array([]), 30, 30, 35, 50)
a, b, c = circles.shape
x = 0
i = 0
for i in range(b):
if (x < int(circles[0][i][0])):
x = int(circles[0][i][0])
y = int(circles[0][i][1])
r = int(circles[0][i][2])
center = (int(circles[0][i][0]), int(circles[0][i][1]))
radius = int(circles[0][i][2])
#cv2.circle(gray, center, radius, (0, 0, 255), 3, cv2.LINE_AA) # draw circle
x2 = 0
for i in range(b):
if (x2 < int(circles[0][i][0]) and int(circles[0][i][0]) < x):
x2 = int(circles[0][i][0])
y2 = int(circles[0][i][1])
r2 = int(circles[0][i][2])
#cv2.imwrite('circles.jpg', gray)
#draw center and circle
#cv2.circle(img, (x, y), r, (0, 0, 255), 3, cv2.LINE_AA) # draw circle
#cv2.circle(img, (x, y), 2, (0, 255, 0), 3, cv2.LINE_AA) # draw center of circle
# Draw secound circle
#cv2.circle(img, (x2, y2), r2, (0, 0, 255), 3, cv2.LINE_AA) # draw circle
#cv2.circle(img, (x2, y2), 2, (0, 255, 0), 3, cv2.LINE_AA) # draw center of circle
#for testing, output circles on image
#cv2.imwrite('color-circles.jpg', img)
return x, y, r, x2, y2, r2
def get_current_value(img, min_angle, max_angle, min_value, max_value, x, y, r, inputfile):
gray2 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Set threshold and maxValue
thresh = 175
maxValue = 255
# apply thresholding which helps for finding lines
th, dst2 = cv2.threshold(gray2, thresh, maxValue, cv2.THRESH_BINARY_INV);
dst2 = cv2.GaussianBlur(dst2, (5, 5), 0)
#print "radius: %s" %r
# find pointer arrow
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# Range for lower red
lower_red = np.array([0, 30, 30])
upper_red = np.array([10, 255, 255])
mask1 = cv2.inRange(hsv, lower_red, upper_red)
# Range for upper range
lower_red = np.array([170, 30, 30])
upper_red = np.array([180, 255, 255])
mask2 = cv2.inRange(hsv, lower_red, upper_red)
# Generating the final mask to detect red color
mask = mask1+mask2
cv2.imwrite("mask.jpg", mask)
res = cv2.bitwise_and(img, img, mask = mask)
edges = cv2.Canny(res, 100, 400, apertureSize=5)
#Getting and Displaying Contours
contours, _ =cv2.findContours(mask, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)
#cv2.drawContours(img, contours,-1,(255, 255, 0), 1)
#Getting Contours around the centre point
shortlist=[]
for i in contours:
bx, by, bw, bh = cv2.boundingRect(i)
if (x < (bx+bw) and x > bx) and (y > by and y < by+bh):
shortlist.append(i)
#cv2.drawContours(img, shortlist[0],-1,(255, 255, 0), 1)
#cv2.imwrite("output-%s" %inputfile, img)
#Getting and Clustering Hull Points
hull = cv2.convexHull(shortlist[0])
mindist = 0
x1 = 0
y1 = 0
hand_points=[]
#for i in hull_points_clustered:
for i in hull:
xb=i[0][0]
yb=i[0][1]
#cv2.circle(img,(xb,yb), 2, (0, 0, 255), 1)
dist = dist_2_pts (xb, yb, x, y)
if (mindist < dist):
mindist = dist
x1 = xb
y1 = yb
#cv2.line(img, (x1,y1), (x, y), (0, 255, 0), 1)
#draw center and circle
#cv2.circle(img, (x, y), r, (0, 0, 255), 1, cv2.LINE_AA) # draw circle
#cv2.circle(img, (x, y), 2, (0, 255, 0), 1, cv2.LINE_AA) # draw center of circle
#cv2.imwrite("output-%s" %inputfile, img)
x_angle = x1 - x
y_angle = y - y1
# take the arc tan of y/x to find the angle
res = np.arctan(np.divide(float(y_angle), float(x_angle)))
#these were determined by trial and error
res = np.rad2deg(res)
if x_angle > 0 and y_angle > 0: #in quadrant I
final_angle = 270 - res
if x_angle < 0 and y_angle > 0: #in quadrant II
final_angle = 90 - res
if x_angle < 0 and y_angle < 0: #in quadrant III
final_angle = 90 - res
if x_angle > 0 and y_angle < 0: #in quadrant IV
final_angle = 270 - res
# 180 degress is 0
old_value = (final_angle + 180) % 360
old_min = float(min_angle)
old_max = float(max_angle)
new_min = float(min_value)
new_max = float(max_value)
old_range = (old_max - old_min)
new_range = (new_max - new_min)
new_value = (((old_value - old_min) * new_range) / old_range) + new_min
return new_value
def main(argv):
inputfile = ''
outputfile = ''
try:
opts, args = getopt.getopt(argv,"hi:o",["ifile="])
except getopt.GetoptError:
print ('python analog_gauge_reader.py -i <inputfile>')
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
print ('python analog_gauge_reader.py -i <inputfile>')
sys.exit()
elif opt in ("-i", "--ifile"):
inputfile = arg
if (inputfile == ''):
print ('python analog_gauge_reader.py -i <inputfile>')
sys.exit(2)
# Find the correct circle
x, y, r, x2, y2, r2 = calibrate_gauge(inputfile)
img = cv2.imread(inputfile)
val = get_current_value(img, 0, 360, 0, 10, x, y, r, inputfile)
# This is the secound gauge showing 10l
val2 = get_current_value(img, 0, 360, 0, 10, x2, y2, r2, inputfile)
base = os.path.basename(inputfile)
filename = os.path.splitext(base)[0]
date = datetime.strptime(filename, '%Y%m%d%H%M')
'''
Output format has to look like this
{ "date": "2014-01-01",
"value1": 2 // * 100
"value2": 2 // * 10
},
'''
final_value = (int(val) * 100) + (round(val2, 1) * 10)
print ("{\"date\": \"%s\", \"value1\": %s, \"value2\": %s}," %(date, round (val, 3), round (val2, 3)))
if __name__=='__main__':
main(sys.argv[1:])
You can’t perform that action at this time.