$ECON2125/4021/8013^*$ Week 11 Tutorial Questions (8/5/2015)

Semester 1 2015

$Question\,1$

Prove the following facts:

1. If $A \subset \mathbb{R}^K$ and $B \subset \mathbb{R}^K$ are bounded sets, then so is $C = A \cup B$.

2. For any two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{K}$, if $\mathbf{a} \neq \mathbf{b}$, then there exists $\varepsilon > 0$, such that $B_{\varepsilon}(\mathbf{a}) \cap B_{\varepsilon}(\mathbf{b}) = \emptyset$.

$Question \, 2$

Prove the following facts:

- 1. Let $\{\mathbf{x}_n\}$ be a sequence in \mathbb{R}^K and $\mathbf{x}, \mathbf{z} \in \mathbb{R}^K$. If $\mathbf{x}_n \to \mathbf{x}$, then $\mathbf{z}'\mathbf{x}_n \to \mathbf{z}'\mathbf{x}$.
- 2. Each sequence in \mathbb{R}^K has at most one limit.
- 3. Every convergent sequence in \mathbb{R}^{K} is bounded.
- 4. Every convergent sequence in \mathbb{R}^{K} is Cauchy.
- 5. Every Cauchy sequence in \mathbb{R}^K is convergent.

^{*}Research School of Economics, Australian National University, Instructor: John Stachurski.

Question 3

Prove that: a sequence $\{\mathbf{x}_n\}$ in \mathbb{R}^K converges to $\mathbf{a} \in \mathbb{R}^K$ if and only if each component sequence converges in \mathbb{R} .

That is,

$$\left(\begin{array}{c} x_n^1\\ \vdots\\ x_n^K \end{array}\right) \to \left(\begin{array}{c} a_1\\ \vdots\\ a^K \end{array}\right) \text{ in } \mathbb{R}^K \Leftrightarrow \begin{array}{c} x_n^1 \to a^1 \text{ in } \mathbb{R}\\ \vdots\\ x_n^K \to a^K \text{ in } \mathbb{R}\end{array}$$