ECON2125/4021/8013* Week 13 Tutorial Questions (22/5/2015)

Semester 1 2015

$Question\,1$

Let $S \subset \mathbb{R}$ and let $x^* \in S$ be a steady state of (S, g).

Prove that: if g is continuously differentiable at x^* and $|g'(x^*)| < 1$, then x^* is locally stable for (S, g).

Question 2

Let $S \subset \mathbb{R}$ and let $x^* \in S$ be a steady state of (S, g).

Prove that: if $g^t(k) \to \hat{k}$ for some $k, \hat{k} \in S$, and g is continuous at \hat{k} , then \hat{k} is a fixed point of g.

Question 3

Prove that x^* is locally stable if and only if there exists an $\varepsilon > 0$ such that $B(\varepsilon, x^*) \subset O(x^*)$. Recall that $O(x^*)$ is the stable set of x^* .

Question 4

Let (S, g) be a dynamical system.

Definition: g is **nonexpansive** on $S \subset \mathbb{R}$, if $\forall x, y \in S$, $|g(x) - g(y)| \le |x - y|$.

Prove that: if g is nonexpansive and (S, g^N) is globally stable for some $N \in \mathbb{N}$, then (S, g) is globally stable.

^{*}Research School of Economics, Australian National University, Instructor: John Stachurski.

Question 5

Let (S, g) be an arbitrary dynamical system. We order points in \mathbb{R}^n by setting $x \leq y$ whenever $x_i \leq y_i$ for i in $\{1, ..., n\}$ (i.e., each component of x is dominated by the corresponding component of y). In the lecture, we learned that if $g: S \to S$ is increasing on S and $S \subset \mathbb{R}$, then every trajectory is monotone. Now consider the case that $S \subset \mathbb{R}^n$ and $g: S \to S$ is an increasing function. Show that the same result no longer holds (i.e., g does not necessarily generate monotone trajectories.)