ECON2125/8013*
 Week 3 Tutorial Questions (6/3/2015)

Semester 12015

Question 1

Consider the following constrained optimization problem

$$
\begin{equation*}
\max _{x, y}\left(\min _{x, y}\right) f(x, y)=x^{2}+y^{2} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{equation*}
g(x, y)=x^{2}+x y+y^{2}=3 \tag{2}
\end{equation*}
$$

(a) Solve this optimization problem. (Hint: There are several solution candidates.)
(b) Try to find the maximizers and minimizers of this problem.

Question 2

Consider the utility maximization problem

$$
\begin{equation*}
\max _{x, y} f(x, y)=x y+x+2 y \tag{3}
\end{equation*}
$$

subject to

$$
\begin{equation*}
2 x+y=m, \quad x \geq 0, y \geq 0 \tag{4}
\end{equation*}
$$

where we have required that the amount of each good is nonnegative. Please solve this problem. (Note: " m " is a strictly positive parameter.)

[^0]
Question 3

Let S be any set, $A \subset S$ and $K_{\lambda} \subset S$ for all $\lambda \in \Lambda$, try to prove the following properties:

$$
A \backslash\left(\underset{\lambda \in \Lambda}{\cup_{\lambda}} K_{\lambda}\right)=\cap_{\lambda \in \Lambda}\left(A \backslash K_{\lambda}\right) \text { and } A \backslash\left(\cap_{\lambda \in \Lambda} K_{\lambda}\right)=\underset{\lambda \in \Lambda}{\cup}\left(A \backslash K_{\lambda}\right)
$$

Question 4

Find the composition $g \circ f$ of two functions f and g, if it exists:
(1) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\sin (x)$, and $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by $g(x)=\frac{x}{1+x^{2}}$.
(2) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=1-x^{2}$, and $g:[0, \infty) \rightarrow \mathbb{R}$ defined by $g(x)=\log (x)$. (Hint: Is there a composition in this case?)

[^0]: *Research School of Economics, Australian National University, Instructor: John Stachurski.

