ECON2125/8013* Week 3 Tutorial Questions (6/3/2015)

Semester 1 2015

$Question\,1$

Consider the following constrained optimization problem

$$\max_{x,y}(\min_{x,y}) f(x,y) = x^2 + y^2 \tag{1}$$

subject to

$$g(x,y) = x^2 + xy + y^2 = 3$$
(2)

(a) Solve this optimization problem. (Hint: There are several solution candidates.)

(b) Try to find the maximizers and minimizers of this problem.

Question 2

Consider the utility maximization problem

$$\max_{x,y} f(x,y) = xy + x + 2y$$
(3)

subject to

$$2x + y = m, \quad x \ge 0, \, y \ge 0 \tag{4}$$

where we have required that the amount of each good is nonnegative. Please solve this problem. (Note: "m" is a strictly positive parameter.)

^{*}Research School of Economics, Australian National University, Instructor: John Stachurski.

$Question \ 3$

Let S be any set, $A \subset S$ and $K_{\lambda} \subset S$ for all $\lambda \in \Lambda$, try to prove the following properties:

$$A \setminus \left(\bigcup_{\lambda \in \Lambda} K_{\lambda} \right) = \bigcap_{\lambda \in \Lambda} \left(A \setminus K_{\lambda} \right) \text{ and } A \setminus \left(\bigcap_{\lambda \in \Lambda} K_{\lambda} \right) = \bigcup_{\lambda \in \Lambda} \left(A \setminus K_{\lambda} \right)$$

Question 4

Find the composition $g \circ f$ of two functions f and g, if it exists:

(1) $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sin(x)$, and $g : \mathbb{R} \to \mathbb{R}$ defined by $g(x) = \frac{x}{1+x^2}$.

(2) $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 1 - x^2$, and $g : [0, \infty) \to \mathbb{R}$ defined by $g(x) = \log(x)$. (Hint: Is there a composition in this case?)