ECON2125/8013*
 Week 4 Tutorial Questions (13/3/2015)

Semester 12015

Question 1

Consider the following two functions, f defined by

$$
\begin{equation*}
f(x)=x^{\frac{1}{2}}-2 \tag{1}
\end{equation*}
$$

is a function from $[0, \infty)$ to \mathbb{R}, and g defined by

$$
\begin{equation*}
g(x)=(x+2)^{\frac{1}{2}} \tag{2}
\end{equation*}
$$

is a function from $[-2, \infty)$ to \mathbb{R}.

1. Specify the range of f and g, respectively.
2. Find the composition $g \circ f$ of these two functions f and g, and the inverse of this composition $(g \circ f)^{-1}$.
3. Find f^{-1} and g^{-1}, then verify $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.

Question 2

Let $f: A \rightarrow B$ be a function, $C_{1} \subset A$ and $C_{2} \subset A$, define $f(C):=\{f(x) \mid x \in$ $C \subset A\}$. Try to verify the following arguments:

1. $f\left(C_{1} \cup C_{2}\right)=f\left(C_{1}\right) \cup f\left(C_{2}\right)$
2. If f is one-to-one, then $f\left(C_{1} \cap C_{2}\right)=f\left(C_{1}\right) \cap f\left(C_{2}\right)$

Suppose f is bijection, which means f^{-1} exists (see the lecture slides). Define $f^{-1}(C):=\{x \mid f(x) \in C \subset B\}$. Show that
3. $f^{-1}\left(C_{1} \cup C_{2}\right)=f^{-1}\left(C_{1}\right) \cup f^{-1}\left(C_{2}\right)$
4. $f^{-1}\left(C_{1} \cap C_{2}\right)=f^{-1}\left(C_{1}\right) \cap f^{-1}\left(C_{2}\right)$

[^0]
Question 3

For any $\alpha \in \mathbb{R}$ and any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{N}$. Try to verify the Parallelogram Equality holds:

$$
\begin{equation*}
\|\boldsymbol{x}+\boldsymbol{y}\|^{2}+\|\boldsymbol{x}-\boldsymbol{y}\|^{2}=2\left(\|\boldsymbol{x}\|^{2}+\|\boldsymbol{y}\|^{2}\right) \tag{3}
\end{equation*}
$$

Question 4

Let $S_{1}, S_{2}, S_{3}, \ldots, S_{n}$ be linear Subspaces of \mathbb{R}^{N}.

1. Try to verify $S_{1} \cap S_{2} \cap \ldots \cap S_{n}$ is always a linear subspace.
2. Is it true that $S_{1} \cup S_{2}$ is always a linear subspace? If yes, prove it. Otherwise, give a counter example.

Question 5

Let S be a linear subspace of $\mathbb{R}^{N}, M \subset \mathbb{R}^{N}$ be a subset. Show that:

1. $\mathbf{0} \in S$.
2. If $X \subset S$, then $\operatorname{span}(X) \subset S$.
3. $\operatorname{span}(S)=S$.
4. Let F be a linear subspace of \mathbb{R}^{N}, F is defined as the smallest linear subspace that contains M if for all linear subspace $Y \subset \mathbb{R}^{N}$ with $M \subset Y$, we have $M \subset F \subset Y$. Show that $\operatorname{span}(M)$ is the smallest linear subspace that contains M.

[^0]: *Research School of Economics, Australian National University, Instructor: John Stachurski.

