ECON2125/8013* Week 4 Tutorial Questions (13/3/2015)

Semester 1 2015

Question 1

Consider the following two functions, f defined by

$$f(x) = x^{\frac{1}{2}} - 2 \tag{1}$$

is a function from $[0,\infty)$ to \mathbb{R} , and g defined by

$$g(x) = (x+2)^{\frac{1}{2}} \tag{2}$$

is a function from $[-2, \infty)$ to \mathbb{R} .

1. Specify the range of f and g, respectively.

2. Find the composition $g \circ f$ of these two functions f and g, and the inverse of this composition $(g \circ f)^{-1}$.

3. Find f^{-1} and g^{-1} , then verify $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Question 2

Let $f : A \to B$ be a function, $C_1 \subset A$ and $C_2 \subset A$, define $f(C) := \{f(x) | x \in C \subset A\}$. Try to verify the following arguments:

1. $f(C_1 \cup C_2) = f(C_1) \cup f(C_2)$

2. If f is one-to-one, then $f(C_1 \cap C_2) = f(C_1) \cap f(C_2)$

Suppose f is bijection, which means f^{-1} exists (see the lecture slides). Define $f^{-1}(C) := \{x | f(x) \in C \subset B\}$. Show that 3. $f^{-1}(C_1 \cup C_2) = f^{-1}(C_1) \cup f^{-1}(C_2)$ 4. $f^{-1}(C_1 \cap C_2) = f^{-1}(C_1) \cap f^{-1}(C_2)$

^{*}Research School of Economics, Australian National University, Instructor: John Stachurski.

Question 3

For any $\alpha \in \mathbb{R}$ and any $x, y \in \mathbb{R}^N$. Try to verify the *Parallelogram Equality* holds:

$$\|\boldsymbol{x} + \boldsymbol{y}\|^2 + \|\boldsymbol{x} - \boldsymbol{y}\|^2 = 2(\|\boldsymbol{x}\|^2 + \|\boldsymbol{y}\|^2)$$
(3)

Question 4

Let $S_1, S_2, S_3, ..., S_n$ be linear Subspaces of \mathbb{R}^N .

1. Try to verify $S_1 \cap S_2 \cap ... \cap S_n$ is always a linear subspace.

2. Is it true that $S_1 \cup S_2$ is always a linear subspace? If yes, prove it. Otherwise, give a counter example.

Question 5

Let S be a linear subspace of \mathbb{R}^N , $M \subset \mathbb{R}^N$ be a subset. Show that:

- 1. $0 \in S$.
- 2. If $X \subset S$, then span $(X) \subset S$.
- 3. $\operatorname{span}(S) = S$.

4. Let F be a linear subspace of \mathbb{R}^N , F is defined as the **smallest** linear subspace that contains M if for all linear subspace $Y \subset \mathbb{R}^N$ with $M \subset Y$, we have $M \subset F \subset Y$. Show that span(M) is the **smallest** linear subspace that contains M.