ECON2125/8013*
 Week 5 Tutorial Questions (20/3/2015)

Semester 12015

Question 1

(1) Let $\mathbf{A}:=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ be such that

$$
\mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}
2 \\
3 \\
5
\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{l}
3 \\
3 \\
8
\end{array}\right]
$$

Is A a basis of \mathbb{R}^{3} ? Why or why not?
(2) X is linearly independent if and only if $X_{0} \subsetneq X \Longrightarrow \operatorname{span}\left(X_{0}\right) \subsetneq \operatorname{span}(X)$. In the lecture, we have proved the sufficient part. Try to prove the necessary condition.
(3) Suppose

$$
\mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}
2 \\
4 \\
5
\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{l}
3 \\
6 \\
8
\end{array}\right]
$$

Use the conclusion in (2) to show that $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ are not linearly independent. (Hint: try to verify, for example, $\operatorname{span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}=\operatorname{span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$).

[^0]
Question 2

For given scalar α and general conformable matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}$, try to verify the following:

1. $\mathbf{A}(\mathbf{B C})=(\mathbf{A B}) \mathbf{C}$
2. $\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}$
3. $(\mathbf{A}+\mathbf{B}) \mathbf{C}=\mathbf{A C}+\mathbf{B C}$
4. $\mathbf{A} \alpha=\alpha \mathbf{A B}$
5. $\mathbf{A I}=\mathbf{I A}=\mathbf{A} .($ Both \mathbf{A} and \mathbf{I} are $N \times N)$
6. Find a counter-example that $\mathbf{A B} \neq \mathbf{B A}$.

Hint: To verify 1., for example, set A:m×n, B:n×k, C:k×l to be general matrices

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right] \\
& \mathbf{B}=\left[\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 k} \\
b_{21} & b_{22} & \ldots & b_{2 k} \\
\vdots & \vdots & & \vdots \\
b_{n 1} & b_{n 2} & \ldots & b_{n k}
\end{array}\right] \\
& \mathbf{C}=\left[\begin{array}{cccc}
c_{11} & c_{12} & \ldots & c_{1 l} \\
c_{21} & c_{22} & \ldots & c_{2 l} \\
\vdots & \vdots & & \vdots \\
c_{k 1} & c_{k 2} & \ldots & c_{k l}
\end{array}\right]
\end{aligned}
$$

Question 3

1. Prove that: A linear map $T: \mathbb{R}^{K} \rightarrow \mathbb{R}^{N}, \operatorname{ker}(T)=\{\mathbf{0}\}$ if and only if T is one-to-one.
2. Prove that: Suppose that $T: \mathbb{R}^{K} \rightarrow \mathbb{R}^{N}$ and $S: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$ are linear maps, then $(S \circ T): \mathbb{R}^{K} \rightarrow \mathbb{R}^{M}$ is also a linear map.

[^0]: *Research School of Economics, Australian National University, Instructor: John Stachurski.

