ECON2125/8013* Week 6 Tutorial Questions (27/3/2015)

Semester 1 2015

$Question\,1$

For conformable matrices A and B, verify the following transpositions hold:

- 1. (A')' = A
- 2. $(\mathbf{AB})' = \mathbf{B}'\mathbf{A}'$
- 3. $(\mathbf{A} + \mathbf{B})' = \mathbf{A}' + \mathbf{B}'$
- 4. $(c\mathbf{A})' = c\mathbf{A}'$ for any constant c.

$Question \, 2$

If **I** is the $N \times N$ identity, **A** and **B** are $N \times N$ matrices and scalar $\alpha \in \mathbb{R}$, then try to verify the following properties when the case is N = 2:

- 1. $det(\mathbf{I}) = 1$
- 2. A is nonsingular if and only if $det(\mathbf{A}) \neq 0$
- 3. $det(\mathbf{AB}) = det(\mathbf{A}) det(\mathbf{B})$
- 4. $\det(\alpha \mathbf{A}) = \alpha^N \det(\mathbf{A})$
- 5. $\det(\mathbf{A}^{-1}) = (\det(\mathbf{A}))^{-1}$

^{*}Research School of Economics, Australian National University, Instructor: John Stachurski.

6. Is it true that $det(\mathbf{A} + \mathbf{B}) = det(\mathbf{A}) + det(\mathbf{B})$? If yes, please verify. If not, then provide a counter example.

7. $\det(\mathbf{A}') = \det(\mathbf{A})$

8. If **A** is nonsingular, then so is \mathbf{A}' , and $(\mathbf{A}')^{-1} = (\mathbf{A}^{-1})'$

$Question \ 3$

Prove that: If matrix **A** is $N \times M$ and matrix **B** is $M \times N$, then trace(**AB**) = trace(**BA**).

Question 4

For conformable matrices \mathbf{A} and \mathbf{B} , verify the following properties of the matrix norm:

- 1. $\|\mathbf{A}\| = \mathbf{0}$ if and only if all entries of \mathbf{A} are zero.
- 2. $\|\alpha \mathbf{A}\| = |\alpha| \|\mathbf{A}\|$ for any scalar α .
- 3. $\|\mathbf{A} + \mathbf{B}\| \le \|\mathbf{A}\| + \|\mathbf{B}\|.$
- 4. If **A** and **B** are square matrices, then $\|\mathbf{AB}\| \leq \|\mathbf{A}\| \|\mathbf{B}\|$.