ECON2125/8013*
 Week 6 Tutorial Questions (27/3/2015)

Semester 12015

Question 1

For conformable matrices \mathbf{A} and \mathbf{B}, verify the following transpositions hold:

1. $\left(\mathbf{A}^{\prime}\right)^{\prime}=\mathbf{A}$
2. $(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}$
3. $(\mathbf{A}+\mathbf{B})^{\prime}=\mathbf{A}^{\prime}+\mathbf{B}^{\prime}$
4. $(c \mathbf{A})^{\prime}=c \mathbf{A}^{\prime}$ for any constant c.

Question 2

If \mathbf{I} is the $N \times N$ identity, \mathbf{A} and \mathbf{B} are $N \times N$ matrices and scalar $\alpha \in \mathbb{R}$, then try to verify the following properties when the case is $N=2$:

1. $\operatorname{det}(\mathbf{I})=1$
2. \mathbf{A} is nonsingular if and only if $\operatorname{det}(\mathbf{A}) \neq 0$
3. $\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})$
4. $\operatorname{det}(\alpha \mathbf{A})=\alpha^{N} \operatorname{det}(\mathbf{A})$
5. $\operatorname{det}\left(\mathbf{A}^{-1}\right)=(\operatorname{det}(\mathbf{A}))^{-1}$

[^0]6. Is it true that $\operatorname{det}(\mathbf{A}+\mathbf{B})=\operatorname{det}(\mathbf{A})+\operatorname{det}(\mathbf{B})$? If yes, please verify. If not, then provide a counter example.
7. $\operatorname{det}\left(\mathbf{A}^{\prime}\right)=\operatorname{det}(\mathbf{A})$
8. If \mathbf{A} is nonsingular, then so is \mathbf{A}^{\prime}, and $\left(\mathbf{A}^{\prime}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{\prime}$

Question 3

Prove that: If matrix \mathbf{A} is $N \times M$ and matrix \mathbf{B} is $M \times N$, then $\operatorname{trace}(\mathbf{A B})=$ trace(BA).

Question 4

For conformable matrices \mathbf{A} and \mathbf{B}, verify the following properties of the matrix norm:

1. $\|\mathbf{A}\|=\mathbf{0}$ if and only if all entries of \mathbf{A} are zero.
2. $\|\alpha \mathbf{A}\|=|\alpha|\|\mathbf{A}\|$ for any scalar α.
3. $\|\mathbf{A}+\mathbf{B}\| \leq\|\mathbf{A}\|+\|\mathbf{B}\|$.
4. If \mathbf{A} and \mathbf{B} are square matrices, then $\|\mathbf{A B}\| \leq\|\mathbf{A}\|\|\mathbf{B}\|$.

[^0]: *Research School of Economics, Australian National University, Instructor: John Stachurski.

