ECON2125/4021/8013* Week 8 Tutorial Questions (24/4/2015)

Semester 1 2015

$Question\,1$

- A, B, C and D are events over sample space. Prove the following statement:
- 1. $\mathbb{P}(A \cap B) \ge \mathbb{P}(A) + \mathbb{P}(B) 1.$
- 2. If $B \subset A$, then $\mathbb{P}(A|B) = 1$.
- 3. If $C \subset B$ and $D \subset B$, then $\mathbb{P}(C|B)/\mathbb{P}(D|B) = \mathbb{P}(C)/\mathbb{P}(D)$.

4. If A and B are two disjoint events, then are A and B independent or not?

Question 2

If α and β are constants, and X and Y are random variables, then verify the following equalities:

- 1. $\operatorname{var}[\alpha + \beta X] = \beta^2 \operatorname{var}[X]$
- 2. $\operatorname{var}[\alpha X + \beta Y] = \alpha^2 \operatorname{var}[X] + \beta^2 \operatorname{var}[Y] + 2\alpha \beta \operatorname{cov}[X, Y]$
- 3. $\operatorname{var}[X] = \mathbb{E}[X^2] (\mathbb{E}[X])^2$

^{*}Research School of Economics, Australian National University, Instructor: John Stachurski.

Question 3

Given two random variables X and Y, and positive constants α and β , try to verify following properties:

1. $-1 \leq \operatorname{corr}[X, Y] \leq 1$

2. $\operatorname{corr}[\alpha X, \beta Y] = \operatorname{corr}[X, Y]$

Question 4

Let X be a random variable. Prove the following results:

1. (Markov Inequality) If X takes only nonnegative values, then for any value a > 0,

$$\mathbb{P}\left\{X \ge a\right\} \le \frac{\mathbb{E}[X]}{a}$$

2. (Chebyshev's Inequality) If X has mean μ and variance σ^2 , then for any value k > 0,

$$\mathbb{P}\left\{|X-\mu| \ge k\sigma\right\} \le \frac{1}{k^2}$$

$Question\,5$

1. A random variable X takes on one of the values 0, 1, 2, ... is said to be a **Poisson random variable** with parameter λ , if its probability mass function is given by

$$p_i = \mathbb{P}\left\{X = i\right\} = e^{-\lambda} \frac{\lambda^i}{i!}, \ i = 0, 1, \dots$$

Calculate the mean and variance of the Poisson random variable X.

2. Consider independent trials, each of which is a success with probability p. If the random variable X represents the number of the first trial that is a success, then X is said to be a **geometric random variable** with parameter p, the probability mass function of which will be given by

$$\mathbb{P}\{X = n\} = p(1-p)^{n-1}, n \ge 1$$

Calculate the mean and variance of the geometric random variable X.

Question 6

A continuous random variable X having probability density function

$$f(x) = \lambda e^{-\lambda x}, \ 0 < x < \infty$$

for some λ is said to be an exponential random variable with parameter λ . Calculate the mean and variance of the **exponential random variable** X. Try to find the cumulative distribution function of X.

Bonus Question 1

A random variable X is said to be a **gamma random variable** with parameters $\alpha > 0$ and $\beta > 0$ if the density of X is

$$f(x) = \begin{cases} \frac{x^{\alpha-1}e^{-x/\beta}}{\beta^{\alpha}\Gamma(\alpha)}, & 0 \le x \le \infty\\ 0, & \text{otherwise} \end{cases}$$

where

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$$

1. Calculate the mean and variance of the gamma random variable X.

2. Let v be a positive integer. A random variable Y is called a **chi-square** (or χ^2) random variable with v degrees of freedom if Y is gamma random variable with parameters $\alpha = v/2$ and $\beta = 2$. Find the mean and variance of the chi-square (or χ^2) random variable Y.

3. What kind of random variable is yielded if X is a gamma random variable with parameter $\alpha = 1$?

Bonus Question 2

A random variable X is said to be a **beta random variable** with parameters $\alpha > 0$ and $\beta > 0$ if the density of X is

$$f(x) = \begin{cases} \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}, & 0 \le x \le 1\\ 0, & \text{otherwise} \end{cases}$$

where

$$B(\alpha,\beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$

Calculate the mean and variance of the beta random variable X.