ECON2125/4021/8013* Week 10 Tutorial Questions (1/5/2015)

Semester 1 2015

Question 1

- 1. Suppose there is an arbitrary constant a > 1. Show that: $\lim_{n \to \infty} \sqrt[n]{a} = 1$.
- 2. Show that: $\lim_{n \to \infty} \sqrt[n]{n} = 1.$
- 3. Prove that: if $\lim_{n \to \infty} a_n = a$, then $\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a$.

Hint: using the ε -language that you have learned in the lecture. (i.e.: given $\varepsilon > 0$, find the suitable N). For example, to show that $\lim_{n \to \infty} \sqrt[n]{a} = 1$, you need to pick an arbitrary $\varepsilon > 0$ firstly, then try to find an $N = N(\varepsilon)$ such that $n \ge N \Rightarrow |\sqrt[n]{a} - 1| < \varepsilon$. Also, you probably need to use the following fact that $\forall a, b \in \mathbb{R}$, $(a + b)^n = \sum_{i=0}^n C_n^i a^i b^{n-i}$, where $C_n^i := \frac{n!}{i!(n-i)!}$ for $1 \le i \le n$.

Question 2

Prove that: $\lim_{n \to \infty} (a_1^n + a_2^n + ... + a_p^n)^{1/n} = \max_{1 \le i \le p} \{a_i\}, \text{ where } a_i \ge 0 \ (i = 1, 2, 3, ..., p).$

Hint: using Squeeze Theorem.

Question 3

If a sequence of closed intervals $\{[a_n, b_n]\}$ satisfies:

- (1) $[a_{n+1}, b_{n+1}] \subset [a_n, b_n], n = 1, 2, 3, ...;$
- (2) $\lim_{n \to \infty} (b_n a_n) = 0.$

Then, show that there exists a **unique** real number $\xi \in \mathbb{R}$, such that: 1. $\xi \in [a_n, b_n]$, for all $n \in \mathbb{N}^+$;

^{*}Research School of Economics, Australian National University, Instructor: John Stachurski.

2.
$$\xi = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$
.