SELECTED SOLUTIONS FOR WEEK 4 TUTORIAL

Question 2

PART 4.

Proof. In this question, based on the condition that f being a bijection, we are required to show that

$$
f^{-1}\left(C_{1} \cap C_{2}\right)=f^{-1}\left(C_{1}\right) \cap f^{-1}\left(C_{2}\right)
$$

Step 1. Verify that $f^{-1}\left(C_{1} \cap C_{2}\right) \subset f^{-1}\left(C_{1}\right) \cap f^{-1}\left(C_{2}\right)$
$\forall x \in f^{-1}\left(C_{1} \cap C_{2}\right)$, we have: $\exists y \in C_{1} \cap C_{2}$ s.t. $x=f^{-1}(y)$
So, $y \in C_{1}$ and $y \in C_{2}$ s.t. $x=f^{-1}(y)$
So, $y \in C_{1}$ s.t. $x=f^{-1}(y)$ and $y \in C_{2}$ s.t. $x=f^{-1}(y)$
So, $x \in f^{-1}\left(C_{1}\right)$ and $x \in f^{-1}\left(C_{2}\right)$
So, $x \in f^{-1}\left(C_{1}\right) \cap f^{-1}\left(C_{2}\right)$
In this way, we showed that $f^{-1}\left(C_{1} \cap C_{2}\right) \subset f^{-1}\left(C_{1}\right) \cap f^{-1}\left(C_{2}\right)$
Step 2. Verify that $f^{-1}\left(C_{1}\right) \cap f^{-1}\left(C_{2}\right) \subset f^{-1}\left(C_{1} \cap C_{2}\right)$
$\forall x \in f^{-1}\left(C_{1}\right) \cap f^{-1}\left(C_{2}\right)$, we have: $x \in f^{-1}\left(C_{1}\right)$ and $x \in f^{-1}\left(C_{2}\right)$
So, $\exists y_{1} \in C_{1}$ s.t. $x=f^{-1}\left(y_{1}\right)$ and $\exists y_{2} \in C_{2}$ s.t. $x=f^{-1}\left(y_{2}\right)$
Since f^{-1} is a bijection, which means f^{-1} is one-to-one. Since $f^{-1}\left(y_{1}\right)=x=f^{-1}\left(y_{2}\right)$, by the definition of one-to-one function, we must have: $y_{1}=y_{2}$.
$y:=y_{1}=y_{2}$, so we have: $y \in C_{1} \cap C_{2}$ and $x=f^{-1}(y)$
So, $\exists y \in C_{1} \cap C_{2}$, s.t. $x=f^{-1}(y)$, i.e., $x \in f^{-1}\left(C_{1} \cap C_{2}\right)$
In this way, we showed that $f^{-1}\left(C_{1}\right) \cap f^{-1}\left(C_{2}\right) \subset f^{-1}\left(C_{1} \cap C_{2}\right)$

Question 4

PART 1.
Proof. $\forall x, y \in S_{1} \cap S_{2} \cap \ldots \cap S_{n}, \forall \alpha, \beta \in \mathbb{R}$, we need to verify that $\alpha x+\beta y \in S_{1} \cap S_{2} \cap \ldots \cap S_{n}$
Since S_{1}, \ldots, S_{n} are all linear subspaces, we have: $\alpha x+\beta y \in S_{1}, \alpha x+\beta y \in S_{2}, \ldots, \alpha x+\beta y \in$ S_{n}, which means $\alpha x+\beta y \in S_{1} \cap S_{2} \cap \ldots \cap S_{n}$

PART 2

Proof. Consider the counter example:

$$
\begin{aligned}
& S_{1}:=\operatorname{span}\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left\{\left[\begin{array}{l}
0 \\
x
\end{array}\right]: x \in \mathbb{R}\right\} \\
& \left.S_{1}:=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)\right)=\left\{\left[\begin{array}{l}
y \\
0
\end{array}\right]: y \in \mathbb{R}\right\}
\end{aligned}
$$

It is obvious that S_{1} and S_{2} are all linear subspaces of \mathbb{R}^{2} (Prove it by the definition of linear subspace).
In this case, $S_{1} \cup S_{2}=\left\{\left[\begin{array}{l}0 \\ x\end{array}\right]: x \in \mathbb{R}\right\} \cup\left\{\left[\begin{array}{l}y \\ 0\end{array}\right]: y \in \mathbb{R}\right\}$. In particular, a typical element of $S_{1} \cup S_{2}$ is an element in \mathbb{R}^{2} that must have at least one coordinate being 0 .

However, $\forall \alpha, \beta \in \mathbb{R}$ with $\alpha, \beta \neq 0$, we have $\alpha\left[\begin{array}{l}0 \\ 1\end{array}\right]+\beta\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}\alpha \\ \beta\end{array}\right] \notin S_{1} \cup S_{2}$ since both coordinates of the vector $\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]$ are not 0 .
This tells us that $S_{1} \cup S_{2}$ is not a linear subspace of \mathbb{R}^{2} since $\left[\begin{array}{l}0 \\ 1\end{array}\right] \in S_{1} \subset S_{1} \cup S_{2}$ and $\left[\begin{array}{l}1 \\ 0\end{array}\right] \in S_{2} \subset S_{1} \cup S_{2}$

