ECON2125/4021/8013
 Lecture 10

John Stachurski

Semester 1, 2015

Transpose

The transpose of \mathbf{A} is the matrix \mathbf{A}^{\prime} defined by

$$
\operatorname{col}_{n}\left(\mathbf{A}^{\prime}\right)=\operatorname{row}_{n}(\mathbf{A})
$$

Examples. If

$$
\mathbf{A}:=\left(\begin{array}{ll}
10 & 40 \\
20 & 50 \\
30 & 60
\end{array}\right) \quad \text { then } \quad \mathbf{A}^{\prime}=\left(\begin{array}{lll}
10 & 20 & 30 \\
40 & 50 & 60
\end{array}\right)
$$

If

$$
\mathbf{B}:=\left(\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right) \quad \text { then } \quad \mathbf{B}^{\prime}:=\left(\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right)
$$

Fact. For conformable matrices A and B, transposition satisfies

1. $\left(\mathbf{A}^{\prime}\right)^{\prime}=\mathbf{A}$
2. $(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}$
3. $(\mathbf{A}+\mathbf{B})^{\prime}=\mathbf{A}^{\prime}+\mathbf{B}^{\prime}$
4. $(c \mathbf{A})^{\prime}=c \mathbf{A}^{\prime}$ for any constant c

For each square matrix A,

1. $\operatorname{det}\left(\mathbf{A}^{\prime}\right)=\operatorname{det}(\mathbf{A})$
2. If \mathbf{A} is nonsingular then so is \mathbf{A}^{\prime}, and $\left(\mathbf{A}^{\prime}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{\prime}$

In [1]: import numpy as np

In [2]: A = np.random.randn(2, 2)

In [3]: np.linalg.inv(A.transpose())
Out [3]:
array ([[4.52767206, -1.83628665],
[0.90504942, 1.5014984]])
In [4]: np.linalg.inv(A).transpose()
Out [4]:
$\operatorname{array}\left(\left[\begin{array}{c}\text {. } 52767206,-1.83628665], ~\end{array}\right.\right.$
[0.90504942, 1.5014984]])

A square matrix \mathbf{A} is called symmetric if $\mathbf{A}^{\prime}=\mathbf{A}$

Equivalent: $a_{n k}=a_{k n}$ for all n, k

Examples.

$$
\mathbf{A}:=\left(\begin{array}{cc}
10 & 20 \\
20 & 50
\end{array}\right), \quad \mathbf{B}:=\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 0 & 0 \\
3 & 0 & 2
\end{array}\right)
$$

Ex. For any matrix \mathbf{A}, show that $\mathbf{A}^{\prime} \mathbf{A}$ and $\mathbf{A} \mathbf{A}^{\prime}$ are always

1. well-defined (multiplication makes sense)
2. symmetric

The trace of a square matrix is defined by

$$
\operatorname{trace}\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 N} \\
\vdots & & \vdots \\
a_{N 1} & \cdots & a_{N N}
\end{array}\right)=\sum_{n=1}^{N} a_{n n}
$$

Fact. $\operatorname{trace}(\mathbf{A})=\operatorname{trace}\left(\mathbf{A}^{\prime}\right)$
Fact. If \mathbf{A} and \mathbf{B} are square matrices and $\alpha, \beta \in \mathbb{R}$, then

$$
\operatorname{trace}(\alpha \mathbf{A}+\beta \mathbf{B})=\alpha \operatorname{trace}(\mathbf{A})+\beta \operatorname{trace}(\mathbf{B})
$$

Fact. When conformable, trace $(\mathbf{A B})=\operatorname{trace}(\mathbf{B A})$

A square matrix \mathbf{A} is called idempotent if $\mathbf{A} \mathbf{A}=\mathbf{A}$

Examples.

$$
\mathbf{A}:=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right), \quad \mathbf{I}:=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The next result is often used in statistics / econometrics:

Fact. If \mathbf{A} is idempotent, then $\operatorname{rank}(\mathbf{A})=\operatorname{trace}(\mathbf{A})$

Diagonal Matrices

Consider a square $N \times N$ matrix \mathbf{A}

The N elements of the form $a_{n n}$ are called the principal diagonal

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 N} \\
a_{21} & a_{22} & \cdots & a_{2 N} \\
\vdots & \vdots & & \vdots \\
a_{N 1} & a_{N 2} & \cdots & a_{N N}
\end{array}\right)
$$

A square matrix \mathbf{D} is called diagonal if all entries off the principal diagonal are zero

$$
\mathbf{D}=\left(\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & d_{N}
\end{array}\right)
$$

Often written as

$$
\mathbf{D}=\operatorname{diag}\left(d_{1}, \ldots, d_{N}\right)
$$

Incidentally, the same notation works in Python

In [1]: import numpy as np
In [2]: D = np.diag((2, 4, 6, 8, 10))
In [3]: D
Out [3]:
$\operatorname{array}([[2,0,0,0,0]$,
$[0,4,0,0,0]$,
$[0,0,6,0,0]$,
$[0,0,0,8,0]$,
[0, 0, 0, 0, 10]])

Diagonal systems are very easy to solve

Example.

$$
\left(\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & d_{2} & 0 \\
0 & 0 & d_{3}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

is equivalent to

$$
\begin{aligned}
& d_{1} x_{1}=b_{1} \\
& d_{2} x_{2}=b_{2} \\
& d_{3} x_{3}=b_{3}
\end{aligned}
$$

Fact. If $\mathbf{C}=\operatorname{diag}\left(c_{1}, \ldots, c_{N}\right)$ and $\mathbf{D}=\operatorname{diag}\left(d_{1}, \ldots, d_{N}\right)$ then

1. $\mathbf{C}+\mathbf{D}=\operatorname{diag}\left(c_{1}+d_{1}, \ldots, c_{N}+d_{N}\right)$
2. $\mathbf{C D}=\operatorname{diag}\left(c_{1} d_{1}, \ldots, c_{N} d_{N}\right)$
3. $\mathbf{D}^{k}=\operatorname{diag}\left(d_{1}^{k}, \ldots, d_{N}^{k}\right)$ for any $k \in \mathbb{N}$
4. $d_{n} \geq 0$ for all $n \Longrightarrow \mathbf{D}^{1 / 2}$ exists and equals

$$
\operatorname{diag}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{N}}\right)
$$

5. $d_{n} \neq 0$ for all $n \Longrightarrow \mathbf{D}$ is nonsingular and

$$
\mathbf{D}^{-1}=\operatorname{diag}\left(d_{1}^{-1}, \ldots, d_{N}^{-1}\right)
$$

Proofs: Check 1 and 2 directly, other parts follow

In [1]: import numpy as np

In [2]: D = np.diag((2, 4, 10, 100))
In [3]: np.linalg.inv(D)
Out [3]:
$\left.\begin{array}{r}\operatorname{array}\left(\left[\begin{array}{llllll}{[0.5} & , & 0 . & 0 . & 0 .\end{array}\right],\right. \\ {[0 .}\end{array}\right)$

A square matrix is called lower triangular if every element strictly above the principle diagonal is zero

Example.

$$
\mathbf{L}:=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 5 & 0 \\
3 & 6 & 1
\end{array}\right)
$$

A square matrix is called upper triangular if every element strictly below the principle diagonal is zero

Example.

$$
\mathbf{U}:=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 5 & 6 \\
0 & 0 & 1
\end{array}\right)
$$

Called triangular if either upper or lower triangular

Associated linear equations also simple to solve

Example.

$$
\left(\begin{array}{lll}
4 & 0 & 0 \\
2 & 5 & 0 \\
3 & 6 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

becomes

$$
\begin{gathered}
4 x_{1}=b_{1} \\
2 x_{1}+5 x_{2}=b_{2} \\
3 x_{1}+6 x_{2}+x_{3}=b_{3}
\end{gathered}
$$

Top equation involves only x_{1}, so can solve for it directly
Plug that value into second equation, solve out for x_{2}, etc.

Eigenvalues and Eigenvectors

Let A be $N \times N$
In general A maps \mathbf{x} to some arbitrary new location $\mathbf{A x}$
But sometimes \mathbf{x} will only be scaled:

$$
\begin{equation*}
\mathbf{A x}=\lambda \mathbf{x} \quad \text { for some scalar } \lambda \tag{1}
\end{equation*}
$$

If (1) holds and \mathbf{x} is nonzero, then

1. \mathbf{x} is called an eigenvector of \mathbf{A} and λ is called an eigenvalue 2. (\mathbf{x}, λ) is called an eigenpair

Clearly (\mathbf{x}, λ) is an eigenpair of $\mathbf{A} \Longrightarrow(\alpha \mathbf{x}, \lambda)$ is an eigenpair of A for any nonzero α

Example. Let

$$
\mathbf{A}:=\left(\begin{array}{cc}
1 & -1 \\
3 & 5
\end{array}\right)
$$

Then

$$
\lambda=2 \quad \text { and } \quad \mathbf{x}=\binom{1}{-1}
$$

form an eigenpair because $\mathbf{x} \neq \mathbf{0}$ and

$$
\mathbf{A x}=\left(\begin{array}{cc}
1 & -1 \\
3 & 5
\end{array}\right)\binom{1}{-1}=\binom{2}{-2}=2\binom{1}{-1}=\lambda \mathbf{x}
$$

Example.

In [3]: import numpy as np
In [4]: $A=[[1,2]$,
$\ldots: \quad[2,1]]$
In [5]: eigvals, eigvecs = np.linalg.eig(A)
In [6]: $\mathrm{x}=$ eigvecs[:,0] \# Let $x=$ first eigenvector
In [7]: lm = eigvals[0] \# Let $l_{m}=$ first eigenvalue

In [8]: np.dot(A, x) \# Compute Ax
Out [8]: array ([2.12132034, 2.12132034])
In [9]: lm * x \# Compute $\mathrm{lm} x$
Out [9]: array([2.12132034, 2.12132034])

Figure: The eigenvectors of \mathbf{A}

Consider the matrix

$$
\mathbf{R}:=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Induces counter-clockwise rotation on any point by 90°
Hence no point \mathbf{x} is scaled
Hence there exists no pair $\lambda \in \mathbb{R}$ and $\mathbf{x} \neq \mathbf{0}$ such that

$$
\mathbf{R} \mathbf{x}=\lambda \mathbf{x}
$$

- In other words, no real-valued eigenpairs exist

Figure: The matrix \mathbf{R} rotates points by 90°

Figure: The matrix \mathbf{R} rotates points by 90°

But $\mathbf{R} \mathbf{x}=\lambda \mathbf{x}$ can hold if we allow complex values

Example.

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{1}{-i}=\binom{i}{1}=i\binom{1}{-i}
$$

That is,

$$
\mathbf{R} \mathbf{x}=\lambda \mathbf{x} \quad \text { for } \quad \lambda:=i \quad \text { and } \quad \mathbf{x}:=\binom{1}{-i}
$$

Hence (\mathbf{x}, λ) is an eigenpair provided we admit complex values
We do, since this is standard

Fact. For any square matrix \mathbf{A}
λ is an eigenvalue of $\mathbf{A} \Longleftrightarrow \operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$

Proof: Let \mathbf{A} by $N \times N$ and let \mathbf{I} be the $N \times N$ identity
We have

$$
\begin{aligned}
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0 & \Longleftrightarrow \mathbf{A}-\lambda \mathbf{I} \text { is singular } \\
& \Longleftrightarrow \exists \mathbf{x} \neq \mathbf{0} \text { s.t. }(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=\mathbf{0} \\
& \Longleftrightarrow \exists \mathbf{x} \neq \mathbf{0} \text { s.t. } \mathbf{A} \mathbf{x}=\lambda \mathbf{x} \\
& \Longleftrightarrow \lambda \text { is an eigenvalue of } \mathbf{A}
\end{aligned}
$$

Example. In the 2×2 case,

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \Longrightarrow \mathbf{A}-\lambda \mathbf{I}=\left(\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right) \\
& \therefore \quad \operatorname{det}(\mathbf{A}-\lambda \mathbf{I}) \\
& =(a-\lambda)(d-\lambda)-b c \\
&
\end{aligned}
$$

Hence the eigenvalues of \mathbf{A} are given by the two roots of

$$
\lambda^{2}-(a+d) \lambda+(a d-b c)=0
$$

Equivalently,

$$
\lambda^{2}-\operatorname{trace}(\mathbf{A}) \lambda+\operatorname{det}(\mathbf{A})=0
$$

Existence of Eigenvalues

Fix $N \times N$ matrix \mathbf{A}

Fact. There exist complex numbers $\lambda_{1}, \ldots, \lambda_{N}$ such that

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\prod_{n=1}^{N}\left(\lambda_{n}-\lambda\right)
$$

Each such λ_{i} is an eigenvalue of \mathbf{A} because

$$
\operatorname{det}\left(\mathbf{A}-\lambda_{i} \mathbf{I}\right)=\prod_{n=1}^{N}\left(\lambda_{n}-\lambda_{i}\right)=0
$$

Important: Not all are necessarily distinct - there can be repeats

Fact. Given $N \times N$ matrix \mathbf{A} with eigenvalues $\lambda_{1}, \ldots, \lambda_{N}$ we have

1. $\operatorname{det}(\mathbf{A})=\prod_{n=1}^{N} \lambda_{n}$
2. $\operatorname{trace}(\mathbf{A})=\sum_{n=1}^{N} \lambda_{n}$
3. If \mathbf{A} is symmetric, then $\lambda_{n} \in \mathbb{R}$ for all n
4. If $\mathbf{A}=\operatorname{diag}\left(d_{1}, \ldots, d_{N}\right)$, then $\lambda_{n}=d_{n}$ for all n

Hence \mathbf{A} is nonsingular \Longleftrightarrow all eigenvalues are nonzero (why?)
Fact. If \mathbf{A} is nonsingular, then

$$
\text { eigenvalues of } \mathbf{A}^{-1}=1 / \lambda_{1}, \ldots, 1 / \lambda_{N}
$$

Diagonalization

Square matrix \mathbf{A} is said to be similar to square matrix \mathbf{B} if
\exists invertible matrix \mathbf{P} such that $\mathbf{A}=\mathbf{P B P}^{-1}$

Fact. If \mathbf{A} is similar to \mathbf{B}, then \mathbf{A}^{t} is similar to \mathbf{B}^{t} for all $t \in \mathbb{N}$

Proof for case $t=2$:

$$
\begin{aligned}
\mathbf{A}^{2} & =\mathbf{A A} \\
& =\mathbf{P B P}^{-1} \mathbf{P B} \mathbf{P}^{-1} \\
& =\mathbf{P B B} \mathbf{P}^{-1} \\
& =\mathbf{P B}^{2} \mathbf{P}^{-1}
\end{aligned}
$$

If \mathbf{A} is similar to a diagonal matrix, then \mathbf{A} is called diagonalizable

Fact. Let \mathbf{A} be diagonalizable with $\mathbf{A}=\mathbf{P D P}^{-1}$ and let

1. $\mathbf{D}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$
2. $\mathbf{p}_{n}:=\operatorname{col}_{n}(\mathbf{P})$

Then $\left(\mathbf{p}_{n}, \lambda_{n}\right)$ is an eigenpair of \mathbf{A} for each n

Proof: From $\mathbf{A}=\mathbf{P D P}^{-1}$ we get $\mathbf{A P}=\mathbf{P D}$
Equating n-th column on each side gives

$$
\mathbf{A} \mathbf{p}_{n}=\lambda_{n} \mathbf{p}_{n}
$$

Moreover $\mathbf{p}_{n} \neq \mathbf{0}$ because \mathbf{P} is invertible (which facts?)

Fact. If $N \times N$ matrix \mathbf{A} has N distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{N}$, then \mathbf{A} is diagonalizable as $\mathbf{A}=\mathbf{P D P}^{-1}$ where

1. $\mathbf{D}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$
2. $\operatorname{col}_{n}(\mathbf{P})$ is an eigenvector for λ_{n}

Example. Let

$$
\mathbf{A}:=\left(\begin{array}{cc}
1 & -1 \\
3 & 5
\end{array}\right)
$$

The eigenvalues of \mathbf{A} are 2 and 4 , while the eigenvectors are

$$
\mathbf{p}_{1}:=\binom{1}{-1} \quad \text { and } \quad \mathbf{p}_{2}:=\binom{1}{-3}
$$

Hence

$$
\mathbf{A}=\mathbf{P} \operatorname{diag}(2,4) \mathbf{P}^{-1}
$$

In [1]: import numpy as np
In [2]: from numpy.linalg import inv
In $[3]: \mathrm{A}=[[1,-1]$,
\ldots...: $[3,5]]$
In [4]: D = np.diag($(2,4))$

In [5]: $\mathrm{P}=[[1,1]$, \# Matrix of eigenvectors
$\ldots: \quad[-1,-3]]$

In [6]: np.dot(P, np.dot(D, inv(P))) \# PDP^\{-1\} = A ? Out [6]:
$\operatorname{array}([[1 .,-1$.$] ,$
[3., 5.]])

The Euclidean Matrix Norm

The concept of norm is very helpful for working with vectors

- provides notions of distance, similarity, convergence

How about an analogous concept for matrices?

Given $N \times K$ matrix \mathbf{A}, we define

$$
\|\mathbf{A}\|:=\max \left\{\frac{\|\mathbf{A} \mathbf{x}\|}{\|\mathbf{x}\|}: \mathbf{x} \in \mathbb{R}^{K}, \mathbf{x} \neq \mathbf{0}\right\}
$$

- LHS is the matrix norm of \mathbf{A}
- RHS is ordinary Euclidean vector norms

In the maximization we can restrict attention to \mathbf{x} s.t. $\|\mathbf{x}\|=1$
To see this let

$$
a:=\max _{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A} \mathbf{x}\|}{\|\mathbf{x}\|} \quad \text { and } \quad b:=\max _{\|\mathbf{x}\|=1} \frac{\|\mathbf{A} \mathbf{x}\|}{\|\mathbf{x}\|}=\max _{\|\mathbf{x}\|=1}\|\mathbf{A} \mathbf{x}\|
$$

Evidently $a \geq b$ because max is over a larger domain
To see the reverse let

- \mathbf{x}_{a} be the maximizer over $\mathbf{x} \neq \mathbf{0}$ and let $\alpha:=1 /\left\|\mathbf{x}_{a}\right\|$
- $\mathbf{x}_{b}:=\alpha \mathbf{x}_{a}$

Then

$$
b \geq \frac{\left\|\mathbf{A} \mathbf{x}_{b}\right\|}{\left\|\mathbf{x}_{b}\right\|}=\frac{\left\|\alpha \mathbf{A} \mathbf{x}_{a}\right\|}{\left\|\alpha \mathbf{x}_{a}\right\|}=\frac{\alpha}{\alpha} \frac{\left\|\mathbf{A} \mathbf{x}_{a}\right\|}{\left\|\mathbf{x}_{a}\right\|}=a
$$

Ex. Show that for any \mathbf{x} we have $\|\mathbf{A x}\| \leq\|\mathbf{A}\|\|\mathbf{x}\|$
If $\|\mathbf{A}\|<1$ then \mathbf{A} is called contractive - it shrinks the norm

The matrix norm has similar properties to the Euclidean norm

Fact. For conformable matrices \mathbf{A} and \mathbf{B}, we have

1. $\|\mathbf{A}\|=\mathbf{0}$ if and only if all entries of \mathbf{A} are zero
2. $\|\alpha \mathbf{A}\|=|\alpha|\|\mathbf{A}\|$ for any scalar α
3. $\|\mathbf{A}+\mathbf{B}\| \leq\|\mathbf{A}\|+\|\mathbf{B}\|$
4. $\|\mathbf{A B}\| \leq\|\mathbf{A}\|\|\mathbf{B}\|$

The last inequality is called the submultiplicative property of the matrix norm

For square \mathbf{A} it implies that $\left\|\mathbf{A}^{k}\right\| \leq\|\mathbf{A}\|^{k}$ for any $k \in \mathbb{N}$

Fact. For the diagonal matrix

$$
\mathbf{D}=\operatorname{diag}\left(d_{1}, \ldots, d_{N}\right)=\left(\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & d_{N}
\end{array}\right)
$$

we have

$$
\|\mathbf{D}\|=\max _{n}\left|d_{n}\right|
$$

Let $\left\{\mathbf{A}_{j}\right\}$ and \mathbf{A} be $N \times K$ matrices

- If $\left\|\mathbf{A}_{j}-\mathbf{A}\right\| \rightarrow 0$ then we say that \mathbf{A}_{j} converges to \mathbf{A}
- If $\sum_{j=1}^{J} \mathbf{A}_{j}$ converges to some matrix \mathbf{B}_{∞} as $J \rightarrow \infty$ we write

$$
\sum_{j=1}^{\infty} \mathbf{A}_{j}=\mathbf{B}_{\infty}
$$

In other words,

$$
\mathbf{B}_{\infty}=\sum_{j=1}^{\infty} \mathbf{A}_{j} \Longleftrightarrow \lim _{J \rightarrow \infty}\left\|\sum_{j=1}^{J} \mathbf{A}_{j}-\mathbf{B}_{\infty}\right\| \rightarrow 0
$$

Neumann Series

Consider the difference equation $\mathbf{x}_{t+1}=\mathbf{A} \mathbf{x}_{t}+\mathbf{b}$, where

- $\mathbf{x}_{t} \in \mathbb{R}^{N}$ represents the values of some variables at time t
- \mathbf{A} and \mathbf{b} form the parameters in the law of motion for \mathbf{x}_{t}

Question of interest: is there an \mathbf{x} such that

$$
\mathbf{x}_{t}=\mathbf{x} \quad \Longrightarrow \mathbf{x}_{t+1}=\mathbf{x}
$$

In other words, we seek an $\mathbf{x} \in \mathbb{R}^{N}$ that solves the system of equations

$$
\mathbf{x}=\mathbf{A x}+\mathbf{b}, \quad \text { where } \quad \mathbf{A} \text { is } N \times N \text { and } \mathbf{b} \text { is } N \times 1
$$

We can get some insight from the scalar case $x=a x+b$

If $|a|<1$, then this equation has the solution

$$
\bar{x}=\frac{b}{1-a}=b \sum_{k=0}^{\infty} a^{k}
$$

Does an analogous result hold in the vector case $\mathbf{x}=\mathbf{A x}+\mathbf{b}$?

Yes, if we replace condition $|a|<1$ with $\|\mathbf{A}\|<1$

Let \mathbf{b} be any vector in \mathbb{R}^{N} and \mathbf{A} be an $N \times N$ matrix
The next result is called the Neumann series lemma

Fact. If $\left\|\mathbf{A}^{k}\right\|<1$ for some $k \in \mathbb{N}$, then $\mathbf{I}-\mathbf{A}$ is invertible and

$$
(\mathbf{I}-\mathbf{A})^{-1}=\sum_{j=0}^{\infty} \mathbf{A}^{j}
$$

In this case $\mathbf{x}=\mathbf{A x}+\mathbf{b}$ has the unique solution

$$
\overline{\mathbf{x}}=\sum_{j=0}^{\infty} \mathbf{A}^{j} \mathbf{b}
$$

Sketch of proof that $(\mathbf{I}-\mathbf{A})^{-1}=\sum_{j=0}^{\infty} \mathbf{A}^{j}$ for case $\|\mathbf{A}\|<1$
We have $(\mathbf{I}-\mathbf{A}) \sum_{j=0}^{\infty} \mathbf{A}^{j}=\mathbf{I}$ because

$$
\begin{aligned}
\left\|(\mathbf{I}-\mathbf{A}) \sum_{j=0}^{\infty} \mathbf{A}^{j}-\mathbf{I}\right\| & =\left\|(\mathbf{I}-\mathbf{A}) \lim _{J \rightarrow \infty} \sum_{j=0}^{J} \mathbf{A}^{j}-\mathbf{I}\right\| \\
& =\lim _{J \rightarrow \infty}\left\|(\mathbf{I}-\mathbf{A}) \sum_{j=0}^{J} \mathbf{A}^{j}-\mathbf{I}\right\| \\
& =\lim _{J \rightarrow \infty}\left\|\mathbf{A}^{J}\right\| \\
& \leq \lim _{J \rightarrow \infty}\|\mathbf{A}\|^{J}=0
\end{aligned}
$$

How to test the hypotheses of the Neumann series lemma?

The spectral radius of square matrix \mathbf{A} is

$$
\rho(\mathbf{A}):=\max \{|\lambda|: \lambda \text { is an eigenvalue of } \mathbf{A}\}
$$

Here $|\lambda|$ is the modulus of the possibly complex number λ

Example. If $\lambda=a+i b$, then

$$
|\lambda|=\left(a^{2}+b^{2}\right)^{1 / 2}
$$

Example. If $\lambda \in \mathbb{R}$, then $|\lambda|$ is the absolute value

Fact. If $\rho(\mathbf{A})<1$, then $\left\|\mathbf{A}^{j}\right\|<1$ for some $j \in \mathbb{N}$

Proof, for diagonalizable A:
We have $\mathbf{A}^{j}=\mathbf{P D}^{j} \mathbf{P}^{-1}$ where

$$
\mathbf{D}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right) \quad \text { and hence } \quad \mathbf{D}^{j}=\operatorname{diag}\left(\lambda_{1}^{j}, \ldots, \lambda_{N}^{j}\right)
$$

Hence

$$
\left\|\mathbf{A}^{j}\right\|=\left\|\mathbf{P D}^{j} \mathbf{P}^{-1}\right\| \leq\|\mathbf{P}\|\left\|\mathbf{D}^{j}\right\|\left\|\mathbf{P}^{-1}\right\|
$$

In particular, when $C:=\|\mathbf{P}\|\left\|\mathbf{P}^{-1}\right\|$,

$$
\left\|\mathbf{A}^{j}\right\| \leq C \max _{n}\left|\lambda_{n}^{j}\right|=C \max _{n}\left|\lambda_{n}\right|^{j}=C \rho(\mathbf{A})^{j}
$$

This is <1 for large enough j because $\rho(\mathbf{A})<1$

