<ロ > < 母 > < 喜 > < 喜 > 言 の へ つ 1/44

ECON2125/4021/8013

Lecture 10

John Stachurski

Semester 1, 2015

Transpose

The transpose of ${\bf A}$ is the matrix ${\bf A}'$ defined by

$$\operatorname{col}_n(\mathbf{A}') = \operatorname{row}_n(\mathbf{A})$$

Examples. If

$$\mathbf{A} := \begin{pmatrix} 10 & 40 \\ 20 & 50 \\ 30 & 60 \end{pmatrix} \quad \text{then} \quad \mathbf{A}' = \begin{pmatrix} 10 & 20 & 30 \\ 40 & 50 & 60 \end{pmatrix}$$

lf

$$\mathbf{B} := \left(\begin{array}{ccc} 1 & 3 & 5 \\ 2 & 4 & 6 \end{array} \right) \quad \text{then} \quad \mathbf{B}' := \left(\begin{array}{ccc} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{array} \right)$$

<ロ > < 母 > < 喜 > < 喜 > 言 の へ C 2/44

Fact. For conformable matrices A and B, transposition satisfies

1.
$$(A')' = A$$

$$2. \ (\mathbf{AB})' = \mathbf{B}'\mathbf{A}'$$

$$\mathbf{3.} \ (\mathbf{A} + \mathbf{B})' = \mathbf{A}' + \mathbf{B}'$$

4.
$$(c\mathbf{A})' = c\mathbf{A}'$$
 for any constant c

For each square matrix A,

- 1. $det(\mathbf{A}') = det(\mathbf{A})$
- 2. If A is nonsingular then so is A', and $(A')^{-1} = (A^{-1})'$

<ロト
(日)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
<

```
Trace and Transpose
    In [1]: import numpy as np
    In [2]: A = np.random.randn(2, 2)
    In [3]: np.linalg.inv(A.transpose())
    Out[3]:
    array([[ 4.52767206, -1.83628665],
           [0.90504942, 1.5014984]])
```

```
In [4]: np.linalg.inv(A).transpose()
Out[4]:
array([[ 4.52767206, -1.83628665],
       [ 0.90504942, 1.5014984 ]])
```

A square matrix A is called symmetric if A' = A

Equivalent: $a_{nk} = a_{kn}$ for all n, k

Examples.

$$\mathbf{A} := \begin{pmatrix} 10 & 20 \\ 20 & 50 \end{pmatrix}, \qquad \mathbf{B} := \begin{pmatrix} 1 & 2 & 3 \\ 2 & 0 & 0 \\ 3 & 0 & 2 \end{pmatrix}$$

Ex. For any matrix A, show that $\mathbf{A}'\mathbf{A}$ and $\mathbf{A}\mathbf{A}'$ are always

- 1. well-defined (multiplication makes sense)
- 2. symmetric

The trace of a square matrix is defined by

trace
$$\begin{pmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & & \vdots \\ a_{N1} & \cdots & a_{NN} \end{pmatrix} = \sum_{n=1}^{N} a_{nn}$$

Fact. $trace(\mathbf{A}) = trace(\mathbf{A}')$

Fact. If **A** and **B** are square matrices and $\alpha, \beta \in \mathbb{R}$, then

trace(
$$\alpha \mathbf{A} + \beta \mathbf{B}$$
) = α trace(\mathbf{A}) + β trace(\mathbf{B})

Fact. When conformable, trace(AB) = trace(BA)

A square matrix ${\bf A}$ is called ${\bf idempotent}$ if ${\bf A}{\bf A}={\bf A}$

Examples.

$$\mathbf{A} := \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \qquad \mathbf{I} := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

The next result is often used in statistics / econometrics:

Fact. If **A** is idempotent, then $rank(\mathbf{A}) = trace(\mathbf{A})$

<ロト < 母 ト < 臣 ト < 臣 ト 三 の へ で 7/44

Diagonal Matrices

Consider a square $N \times N$ matrix \mathbf{A}

The N elements of the form a_{nn} are called the **principal diagonal**

(<i>a</i> ₁₁	a_{12}	•••	a_{1N}	
	a_{21}	<i>a</i> ₂₂	•••	a_{2N}	
	÷	÷		÷	
ĺ	a_{N1}	a_{N2}	•••	a _{NN}	Ϊ

4 ロ ト 4 日 ト 4 王 ト 王 シ へ 8/44

A square matrix ${\bf D}$ is called **diagonal** if all entries off the principal diagonal are zero

$$\mathbf{D} = \begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & d_N \end{pmatrix}$$

Often written as

$$\mathbf{D} = \operatorname{diag}(d_1, \ldots, d_N)$$

Incidentally, the same notation works in Python

```
In [1]: import numpy as np
In [2]: D = np.diag((2, 4, 6, 8, 10))
In [3]: D
Out [3]:
array([[ 2, 0, 0, 0],
      [0, 4, 0, 0, 0],
      [0, 0, 6, 0, 0],
      [0, 0, 0, 8, 0],
      [0, 0, 0, 0, 10]])
```

<ロト < 母 ト < 王 ト < 王 ト 三 の < ⁽⁾ 10/44

<ロト < 母 ト < 臣 ト < 臣 ト 三 の へ で 11/44

Diagonal systems are very easy to solve

Example.

$$egin{pmatrix} d_1 & 0 & 0 \ 0 & d_2 & 0 \ 0 & 0 & d_3 \end{pmatrix} egin{pmatrix} x_1 \ x_2 \ x_3 \end{pmatrix} = egin{pmatrix} b_1 \ b_2 \ b_3 \end{pmatrix}$$

is equivalent to

$$d_1 x_1 = b_1$$

$$d_2 x_2 = b_2$$

$$d_3 x_3 = b_3$$

(ロ)、(部)、(E)、(E)、 E) の(で 12/44)

Fact. If $\mathbf{C} = \operatorname{diag}(c_1, \ldots, c_N)$ and $\mathbf{D} = \operatorname{diag}(d_1, \ldots, d_N)$ then

1.
$$\mathbf{C} + \mathbf{D} = \operatorname{diag}(c_1 + d_1, \dots, c_N + d_N)$$

2. **CD** = diag
$$(c_1d_1,\ldots,c_Nd_N)$$

3.
$$\mathbf{D}^k = \operatorname{diag}(d_1^k, \dots, d_N^k)$$
 for any $k \in \mathbb{N}$

4.
$$d_n \ge 0$$
 for all $n \implies \mathbf{D}^{1/2}$ exists and equals

diag
$$(\sqrt{d_1},\ldots,\sqrt{d_N})$$

5. $d_n \neq 0$ for all $n \implies \mathbf{D}$ is nonsingular and

$$\mathbf{D}^{-1} = \operatorname{diag}(d_1^{-1}, \dots, d_N^{-1})$$

Proofs: Check 1 and 2 directly, other parts follow

Trace and Transpose	Diagonal Matrices	Eigenvalues	Matrix Norm	Neumann Series

In [1]: import numpy as np

```
In [2]: D = np.diag((2, 4, 10, 100))
```

```
In [3]: np.linalg.inv(D)
Out[3]:
array([[ 0.5 , 0. , 0. , 0. ],
       [ 0. , 0.25, 0. , 0. ],
       [ 0. , 0. , 0.1 , 0. ],
       [ 0. , 0. , 0. , 0.01]])
```

<ロト < 母 ト < 三 ト < 三 ト 三 の へ で 13/44

<ロト < 母 ト < 王 ト < 王 ト 三 の < で 14/44

A square matrix is called **lower triangular** if every element strictly above the principle diagonal is zero

Example.

$$\mathsf{L} := \left(\begin{array}{rrr} 1 & 0 & 0 \\ 2 & 5 & 0 \\ 3 & 6 & 1 \end{array} \right)$$

A square matrix is called **upper triangular** if every element strictly below the principle diagonal is zero

Example.

$$\mathbf{U} := \left(\begin{array}{rrr} 1 & 2 & 3 \\ 0 & 5 & 6 \\ 0 & 0 & 1 \end{array} \right)$$

Called triangular if either upper or lower triangular

Associated linear equations also simple to solve

Example.

$$\left(\begin{array}{rrr} 4 & 0 & 0 \\ 2 & 5 & 0 \\ 3 & 6 & 1 \end{array}\right) \left(\begin{array}{r} x_1 \\ x_2 \\ x_3 \end{array}\right) = \left(\begin{array}{r} b_1 \\ b_2 \\ b_3 \end{array}\right)$$

becomes

$$4x_1 = b_1 2x_1 + 5x_2 = b_2 3x_1 + 6x_2 + x_3 = b_3$$

Top equation involves only x_1 , so can solve for it directly

Plug that value into second equation, solve out for x_2 , etc.

Eigenvalues and Eigenvectors

Let ${\bf A}$ be $N\times N$

In general A maps x to some arbitrary new location Ax

But sometimes \mathbf{x} will only be <u>scaled</u>:

 $\mathbf{A}\mathbf{x} = \lambda \mathbf{x} \quad \text{for some scalar } \lambda \tag{1}$

If (1) holds and x is nonzero, then

- 1. x is called an eigenvector of A and λ is called an eigenvalue
- 2. (\mathbf{x}, λ) is called an **eigenpair**

Clearly (\mathbf{x}, λ) is an eigenpair of $\mathbf{A} \implies (\alpha \mathbf{x}, \lambda)$ is an eigenpair of \mathbf{A} for any nonzero α

Example. Let

$$\mathbf{A} := \begin{pmatrix} 1 & -1 \\ 3 & 5 \end{pmatrix}$$

Then

$$\lambda = 2$$
 and $\mathbf{x} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

form an eigenpair because $x \neq 0$ and

$$\mathbf{A}\mathbf{x} = \begin{pmatrix} 1 & -1 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -2 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \lambda \mathbf{x}$$

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の へ で 17/44

Trace and Transpose	Diagonal Matrices	Eigenvalues	Matrix Norm	Neumann Series
Example.				
In [4]:	<pre>import numpy as A = [[1, 2], [2, 1]]</pre>	np		
In [5]:	eigvals, eigvec:	s = np.lina	lg.eig(A)	
	<pre>x = eigvecs[:,0] lm = eigvals[0]</pre>		= first eige n = first eig	

In [8]: np.dot(A, x) # Compute Ax
Out[8]: array([2.12132034, 2.12132034])
In [9]: lm * x # Compute lm x
Out[9]: array([2.12132034, 2.12132034])

Trace and Transpose	Diagonal Matrices	Eigenvalues	Matrix Norm	Neumann Series

Figure : The eigenvectors of \mathbf{A}

Trace and Transpose	Diagonal Matrices	Eigenvalues	Matrix Norm	Neumann Series

Consider the matrix

$$\mathbf{R} := \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right)$$

Induces counter-clockwise rotation on any point by 90°

Hence no point \mathbf{x} is scaled

Hence there exists <u>no</u> pair $\lambda \in \mathbb{R}$ and $\mathbf{x} \neq \mathbf{0}$ such that

$$\mathbf{R}\mathbf{x} = \lambda \mathbf{x}$$

In other words, no <u>real-valued</u> eigenpairs exist

Irace		

Figure : The matrix ${f R}$ rotates points by 90°

Trace and Transpose	Diagonal Matrices	Eigenvalues

Figure : The matrix ${f R}$ rotates points by 90°

Matrix Norm

Neumann Series

But $\mathbf{R}\mathbf{x} = \lambda \mathbf{x}$ can hold <u>if</u> we allow complex values

Example.

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -i \end{pmatrix} = \begin{pmatrix} i \\ 1 \end{pmatrix} = i \begin{pmatrix} 1 \\ -i \end{pmatrix}$$

That is,

$$\mathbf{R}\mathbf{x} = \lambda \mathbf{x}$$
 for $\lambda := i$ and $\mathbf{x} := \begin{pmatrix} 1 \\ -i \end{pmatrix}$

Hence (\mathbf{x}, λ) is an eigenpair provided we admit complex values We do, since this is standard Fact. For any square matrix A

 λ is an eigenvalue of $\mathbf{A} \iff \det(\mathbf{A} - \lambda \mathbf{I}) = 0$

Proof: Let ${\bf A}$ by $N\times N$ and let ${\bf I}$ be the $N\times N$ identity We have

$$det(\mathbf{A} - \lambda \mathbf{I}) = 0 \iff \mathbf{A} - \lambda \mathbf{I} \text{ is singular}$$
$$\iff \exists \mathbf{x} \neq \mathbf{0} \text{ s.t. } (\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$$
$$\iff \exists \mathbf{x} \neq \mathbf{0} \text{ s.t. } \mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$
$$\iff \lambda \text{ is an eigenvalue of } \mathbf{A}$$

(ロ)、(部)、(E)、(E)、 E) の(で 24/44)

Example. In the 2×2 case,

$$\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \implies \mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}$$

$$\therefore \quad \det(\mathbf{A} - \lambda \mathbf{I}) = (a - \lambda)(d - \lambda) - bc$$
$$= \lambda^2 - (a + d)\lambda + (ad - bc)$$

Hence the eigenvalues of \mathbf{A} are given by the two roots of

$$\lambda^2 - (a+d)\lambda + (ad-bc) = 0$$

Equivalently,

$$\lambda^2 - \text{trace}(\mathbf{A})\lambda + \text{det}(\mathbf{A}) = 0$$

<ロト < 母 ト < 臣 ト < 臣 ト 三 の へ C 25/44

Existence of Eigenvalues

Fix $N \times N$ matrix **A**

Fact. There exist complex numbers $\lambda_1, \ldots, \lambda_N$ such that

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \prod_{n=1}^{N} (\lambda_n - \lambda)$$

Each such λ_i is an eigenvalue of **A** because

$$\det(\mathbf{A} - \lambda_i \mathbf{I}) = \prod_{n=1}^N (\lambda_n - \lambda_i) = 0$$

Important: Not all are necessarily distinct — there can be repeats

4 ロ ト 4 回 ト 4 三 ト 4 三 ト 三 の 4 で 26/44

Fact. Given $N \times N$ matrix **A** with eigenvalues $\lambda_1, \ldots, \lambda_N$ we have

- 1. det(**A**) = $\prod_{n=1}^{N} \lambda_n$
- 2. trace(**A**) = $\sum_{n=1}^{N} \lambda_n$
- 3. If **A** is symmetric, then $\lambda_n \in \mathbb{R}$ for all n

4. If
$$\mathbf{A} = \operatorname{diag}(d_1, \ldots, d_N)$$
, then $\lambda_n = d_n$ for all n

Hence A is nonsingular \iff all eigenvalues are nonzero (why?)

Fact. If A is nonsingular, then

eigenvalues of
$$\mathbf{A}^{-1} = 1/\lambda_1, \dots, 1/\lambda_N$$

<ロト < @ ト < 三 ト < 三 ト 三 の へ C 27/44

Diagonalization

Square matrix \boldsymbol{A} is said to be similar to square matrix \boldsymbol{B} if

 \exists invertible matrix **P** such that $\mathbf{A} = \mathbf{PBP}^{-1}$

・ロト (日)、(三)、(三)、(三)、(三)、(28/44)

Fact. If **A** is similar to **B**, then \mathbf{A}^t is similar to \mathbf{B}^t for all $t \in \mathbb{N}$

Proof for case t = 2:

$$\mathbf{A}^2 = \mathbf{A}\mathbf{A}$$

 $= \mathbf{P}\mathbf{B}\mathbf{P}^{-1}\mathbf{P}\mathbf{B}\mathbf{P}^{-1}$ $= \mathbf{P}\mathbf{B}\mathbf{B}\mathbf{P}^{-1}$ $= \mathbf{P}\mathbf{B}^{2}\mathbf{P}^{-1}$

<ロト < 母ト < 茎ト < 茎ト 茎 のへで 29/44

If \mathbf{A} is similar to a diagonal matrix, then \mathbf{A} is called diagonalizable

Fact. Let A be diagonalizable with $A = PDP^{-1}$ and let

1.
$$\mathbf{D} = \operatorname{diag}(\lambda_1, \dots, \lambda_N)$$

2. $\mathbf{p}_n := \operatorname{col}_n(\mathbf{P})$

Then $(\mathbf{p}_n, \lambda_n)$ is an eigenpair of **A** for each *n*

Proof: From $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$ we get $\mathbf{A}\mathbf{P} = \mathbf{P}\mathbf{D}$

Equating n-th column on each side gives

$$\mathbf{A}\mathbf{p}_n = \lambda_n \mathbf{p}_n$$

Moreover $\mathbf{p}_n \neq \mathbf{0}$ because **P** is invertible (which facts?)

Fact. If $N \times N$ matrix **A** has N distinct eigenvalues $\lambda_1, \ldots, \lambda_N$, then **A** is diagonalizable as $\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$ where

1.
$$\mathbf{D} = \operatorname{diag}(\lambda_1, \ldots, \lambda_N)$$

2. $\operatorname{col}_n(\mathbf{P})$ is an eigenvector for λ_n

Example. Let

$$\mathbf{A} := \begin{pmatrix} 1 & -1 \\ 3 & 5 \end{pmatrix}$$

The eigenvalues of \mathbf{A} are 2 and 4, while the eigenvectors are

$$\mathbf{p}_1 := \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 and $\mathbf{p}_2 := \begin{pmatrix} 1 \\ -3 \end{pmatrix}$

Hence

$$\mathbf{A} = \mathbf{P}\operatorname{diag}(2,4)\mathbf{P}^{-1}$$

<ロト < 母 ト < 三 ト < 三 ト 三 の へ C 31/44

Trace and Transpose	Diagonal Matrices	Eigenvalues	Matrix Norm	Neumann Series
	<pre>import numpy as</pre>	-		
ln [2]:	from numpy.lina	lg import i	nv	
In [3]:	A = [[1, -1]],			
· · · • •	[3, 5]]			
Tn [4]∙	D = np.diag((2,	4))		
±** [±]•	<i>b</i> inp:didg((2,	±//		
	P = [[1, 1], #	Matrix of	eigenvectors	
• • • • •	[-1, -3]]			
In [6]:	np.dot(P, np.do	t(D, inv(P))) # PDP^{-:	1 = A?
Out[6]:				
•	1., -1.],			
l	3., 5.]])			
-				

<ロト < 部 < ミト < ミト ミ の < で 33/44

The Euclidean Matrix Norm

The concept of norm is very helpful for working with vectors

• provides notions of distance, similarity, convergence

How about an analogous concept for matrices?

Given $N \times K$ matrix **A**, we define

$$\|\mathbf{A}\| := \max\left\{ rac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|} \, : \, \mathbf{x} \in \mathbb{R}^{K}, \, \mathbf{x}
eq \mathbf{0}
ight\}$$

- LHS is the matrix norm of A
- RHS is ordinary Euclidean vector norms

In the maximization we can restrict attention to ${\bf x}$ s.t. $\|{\bf x}\|=1$ To see this let

$$a := \max_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|}$$
 and $b := \max_{\|\mathbf{x}\|=1} \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|} = \max_{\|\mathbf{x}\|=1} \|\mathbf{A}\mathbf{x}\|$

Evidently $a \ge b$ because max is over a larger domain

To see the reverse let

• \mathbf{x}_a be the maximizer over $\mathbf{x} \neq \mathbf{0}$ and let $\alpha := 1/\|\mathbf{x}_a\|$

•
$$\mathbf{x}_b := \alpha \mathbf{x}_a$$

Then

$$b \geq \frac{\|\mathbf{A}\mathbf{x}_b\|}{\|\mathbf{x}_b\|} = \frac{\|\alpha \mathbf{A}\mathbf{x}_a\|}{\|\alpha \mathbf{x}_a\|} = \frac{\alpha}{\alpha} \frac{\|\mathbf{A}\mathbf{x}_a\|}{\|\mathbf{x}_a\|} = a$$

<ロト < 母 ト < 王 ト < 王 ト 三 の へ C 34/44

Ex. Show that for any **x** we have $\|\mathbf{A}\mathbf{x}\| \leq \|\mathbf{A}\| \|\mathbf{x}\|$

If $\|\mathbf{A}\| < 1$ then \mathbf{A} is called **contractive** — it shrinks the norm

・ロト 4 日 ト 4 三 ト 4 三 ト 三 の 4 で 35/44

The matrix norm has similar properties to the Euclidean norm

Fact. For conformable matrices A and B, we have

- 1. $\|\mathbf{A}\| = \mathbf{0}$ if and only if all entries of \mathbf{A} are zero
- 2. $\|\alpha \mathbf{A}\| = |\alpha| \|\mathbf{A}\|$ for any scalar α
- 3. $\|\mathbf{A} + \mathbf{B}\| \le \|\mathbf{A}\| + \|\mathbf{B}\|$
- $\textbf{4.} \ \|\textbf{A}\textbf{B}\| \leq \|\textbf{A}\|\|\textbf{B}\|$

The last inequality is called the submultiplicative property of the matrix norm

For square ${f A}$ it implies that $\|{f A}^k\| \le \|{f A}\|^k$ for any $k\in {\Bbb N}$

<ロト < 団 ト < 巨 ト < 巨 ト 三 の へ で 36/44

Fact. For the diagonal matrix

$$\mathbf{D} = \operatorname{diag}(d_1, \dots, d_N) = \begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & d_N \end{pmatrix}$$

we have

$$\|\mathbf{D}\| = \max_n |d_n|$$

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の Q C 37/44

Let $\{\mathbf{A}_j\}$ and \mathbf{A} be $N \times K$ matrices

- If $\|\mathbf{A}_j - \mathbf{A}\| \to 0$ then we say that \mathbf{A}_j converges to \mathbf{A}

• If $\sum_{j=1}^J \mathbf{A}_j$ converges to some matrix \mathbf{B}_∞ as $J o \infty$ we write

$$\sum_{j=1}^{\infty} \mathbf{A}_j = \mathbf{B}_{\infty}$$

In other words,

$$\mathbf{B}_{\infty} = \sum_{j=1}^{\infty} \mathbf{A}_j \quad \iff \quad \lim_{J \to \infty} \left\| \sum_{j=1}^{J} \mathbf{A}_j - \mathbf{B}_{\infty} \right\| \to 0$$

(ロ)、(日)、(三)、(三)、(三)、(三)、(2)、(38/44)

Neumann Series

Consider the difference equation $\mathbf{x}_{t+1} = \mathbf{A}\mathbf{x}_t + \mathbf{b}$, where

- $\mathbf{x}_t \in \mathbb{R}^N$ represents the values of some variables at time t
- A and b form the parameters in the law of motion for x_t

Question of interest: is there an x such that

$$\mathbf{x}_t = \mathbf{x} \implies \mathbf{x}_{t+1} = \mathbf{x}$$

In other words, we seek an $\mathbf{x} \in \mathbb{R}^N$ that solves the system of equations

 $\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{b}$, where \mathbf{A} is $N \times N$ and \mathbf{b} is $N \times 1$

We can get some insight from the scalar case x = ax + b

If |a| < 1, then this equation has the solution

$$\bar{x} = \frac{b}{1-a} = b \sum_{k=0}^{\infty} a^k$$

Does an analogous result hold in the vector case $\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{b}$?

Yes, if we replace condition |a| < 1 with $||\mathbf{A}|| < 1$

<ロト < 母 ト < 三 ト < 三 ト 三 の へ で 40/44

Eigenvalue

(ロト 4 部) 4 目 + 4 目 ト 目 の Q ペ 41/44

Let **b** be any vector in \mathbb{R}^N and **A** be an $N \times N$ matrix The next result is called the Neumann series lemma

Fact. If $\|\mathbf{A}^k\| < 1$ for some $k \in \mathbb{N}$, then $\mathbf{I} - \mathbf{A}$ is invertible and

$$(\mathbf{I} - \mathbf{A})^{-1} = \sum_{j=0}^{\infty} \mathbf{A}^j$$

In this case $\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{b}$ has the unique solution

$$\bar{\mathbf{x}} = \sum_{j=0}^{\infty} \mathbf{A}^j \mathbf{b}$$

Sketch of proof that $(\mathbf{I} - \mathbf{A})^{-1} = \sum_{j=0}^{\infty} \mathbf{A}^j$ for case $\|\mathbf{A}\| < 1$ We have $(\mathbf{I} - \mathbf{A}) \sum_{i=0}^{\infty} \mathbf{A}^j = \mathbf{I}$ because

$$\left\| (\mathbf{I} - \mathbf{A}) \sum_{j=0}^{\infty} \mathbf{A}^{j} - \mathbf{I} \right\| = \left\| (\mathbf{I} - \mathbf{A}) \lim_{J \to \infty} \sum_{j=0}^{J} \mathbf{A}^{j} - \mathbf{I} \right\|$$

$$= \lim_{J \to \infty} \left\| (\mathbf{I} - \mathbf{A}) \sum_{j=0}^{J} \mathbf{A}^{j} - \mathbf{I} \right\|$$

$$= \lim_{J \to \infty} \left\| \mathbf{A}^J \right\|$$

$$\leq \lim_{J o \infty} \|\mathbf{A}\|^J = 0$$

(ロ)、(部)、(E)、(E)、 E) の(で 42/44)

How to test the hypotheses of the Neumann series lemma?

The spectral radius of square matrix A is

 $\rho(\mathbf{A}) := \max\{|\lambda| : \lambda \text{ is an eigenvalue of } \mathbf{A}\}$

Here $|\lambda|$ is the **modulus** of the possibly complex number λ

Example. If $\lambda = a + ib$, then

$$|\lambda| = (a^2 + b^2)^{1/2}$$

Example. If $\lambda \in \mathbb{R}$, then $|\lambda|$ is the absolute value

(ロ)、(日)、(三)、(三)、(三)、(三)、(2)、(3),44

Fact. If $\rho(\mathbf{A}) < 1$, then $\|\mathbf{A}^j\| < 1$ for some $j \in \mathbb{N}$

Proof, for diagonalizable A:

We have $\mathbf{A}^{j} = \mathbf{P}\mathbf{D}^{j}\mathbf{P}^{-1}$ where

 $\mathbf{D} = \operatorname{diag}(\lambda_1, \dots, \lambda_N)$ and hence $\mathbf{D}^j = \operatorname{diag}(\lambda_1^j, \dots, \lambda_N^j)$

Hence

$$\|\mathbf{A}^{j}\| = \|\mathbf{P}\mathbf{D}^{j}\mathbf{P}^{-1}\| \le \|\mathbf{P}\|\|\mathbf{D}^{j}\|\|\mathbf{P}^{-1}\|$$

In particular, when $C := \|\mathbf{P}\| \|\mathbf{P}^{-1}\|$,

$$\|\mathbf{A}^{j}\| \leq C \max_{n} |\lambda_{n}^{j}| = C \max_{n} |\lambda_{n}|^{j} = C \rho(\mathbf{A})^{j}$$

This is < 1 for large enough j because $\rho(\mathbf{A}) < 1$

・ロト <
同 ト <
言 ト <
言 ト 、
言 ・
の へ
の 44/44
</p>