ECON2125/4021/8013
 Lecture 11

John Stachurski

Semester 1, 2015

Announcements

- Midterm exam date finalized
- Date: 23rd April
- Place: COP G30
- Time: 6 pm (writing time 6:30-8:30pm)

Quadratic Forms

Up till now we have studied linear functions extensively

Next level of complexity is quadratic maps

Let \mathbf{A} be $N \times N$ and symmetric, and let \mathbf{x} be $N \times 1$

The quadratic function on \mathbb{R}^{N} associated with \mathbf{A} is the map

$$
Q: \mathbb{R}^{N} \rightarrow \mathbb{R}, \quad Q(\mathbf{x}):=\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}=\sum_{j=1}^{N} \sum_{i=1}^{N} a_{i j} x_{i} x_{j}
$$

The properties of Q depend on \mathbf{A}

An $N \times N$ symmetric matrix \mathbf{A} is called

1. nonnegative definite if $\mathbf{x}^{\prime} \mathbf{A} \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{N}$
2. positive definite if $\mathbf{x}^{\prime} \mathbf{A x}>0$ for all $\mathbf{x} \in \mathbb{R}^{N}$ with $\mathbf{x} \neq \mathbf{0}$
3. nonpositive definite if $\mathbf{x}^{\prime} \mathbf{A x} \leq 0$ for all $\mathbf{x} \in \mathbb{R}^{N}$
4. negative definite if $\mathbf{x}^{\prime} \mathbf{A x}<0$ for all $\mathbf{x} \in \mathbb{R}^{N}$ with $\mathbf{x} \neq \mathbf{0}$

Figure: A positive definite case: $Q(\mathbf{x})=\mathbf{x}^{\prime} \mathbf{I} \mathbf{x}$

Figure: A negative definite case: $Q(\mathbf{x})=\mathbf{x}^{\prime}(-\mathbf{I}) \mathbf{x}$

Note that some matrices have none of these properties

- $\mathbf{x}^{\prime} \mathbf{A x}<0$ for some \mathbf{x}
- $\mathbf{x}^{\prime} \mathbf{A x}>0$ for other \mathbf{x}

In this case \mathbf{A} is called indefinite

Figure: Indefinite quadratic function $Q(\mathbf{x})=x_{1}^{2} / 2+8 x_{1} x_{2}+x_{2}^{2} / 2$

Fact. A symmetric matrix \mathbf{A} is

1. positive definite \Longleftrightarrow all eigenvalues are strictly positive
2. negative definite \Longleftrightarrow all eigenvalues are strictly negative
3. nonpositive definite \Longleftrightarrow all eigenvalues are nonpositive
4. nonnegative definite \Longleftrightarrow all eigenvalues are nonnegative

It follows that

- \mathbf{A} is positive definite $\Longrightarrow \operatorname{det}(\mathbf{A})>0$

In particular, \mathbf{A} is nonsingular

New Topic

PROBABILITY

Topics

- Probability models
- Random variables
- Expectations
- Distributions
- Independence and dependence
- Asymptotics
- Multivariate models

Motivation

The real world is messy relative to models

- especially econ / finance

In physics / chemistry / engineering, many theories are quite precise

- Hooke's law
- $E=m c^{2}$
- Ideal gas law
- etc.

The same is not true of models in econ / finance

Data is "noisy" relative to models

- Not everything can be explained by a given model
- Some events are "unpredictable"

Implication: We should model noise explicitly in order to

- Better match models to data
- Prepare for statistical analysis
- Add information we have about the noise

Good news: noise / randomness itself contains patterns

- Bursts of volatility in financial markets
- Bell shaped curve in abilities, test outcomes, etc.
- "Power law" in size of cities, firms
- Return on equities higher than bonds "on average"

Figure : Volatility of daily returns

Figure: Cumulative return, $1 \$$ invested in equities or bonds

The role of probability theory:

- Model phenomena that are "not fully predictable"
- Provide concepts for analyzing such phenomena
- Facilitate deductive reasoning in this setting

Example. Oil futures are "riskier" than US treasuries
Example. If event A occurs whenever event B occurs, then the probability of A should be at least as high

Example. A monkey typing randomly at a keyboard will eventually reproduce the entire works of Shakespeare word for word

Sample Spaces

First step of modeling: list all the things that can happen
In probability theory this is called the sample space
$=$ set of all possible outcomes in a random experiment

- can be any nonempty set
- typically denoted Ω
- typical element of Ω denoted ω

A subset of Ω is also called an event

Figure ：Sample spaceロ〉4㓠（ 引 三＞4

Let \mathcal{F} denote set of all events
For example, $\varnothing \in \mathcal{F}$ and $\Omega \in \mathcal{F}$
Example
Consider an experiment where we roll a dice
We let $\Omega:=\{1, \ldots, 6\}$ represent the set of possible outcomes
A typical outcome is

$$
\omega=4
$$

A typical element of \mathcal{F} is

$$
A:=\{2,4,6\}=\{\text { an even face }\}
$$

The idea "event A occurs" means that

$$
\text { when } \omega \in \Omega \text { is selected by "nature," } \omega \in A
$$

Example
Consider again the experiment where we roll a dice
As before let $\Omega:=\{1, \ldots, 6\}$
Let A be the event

$$
\{2,4,6\}=\{\text { an even face }\}
$$

" A occurs" means ω is one of $2,4,6$

Figure : Event A occurs

Figure: Event A does not occur (but A^{c} does)

Probabilities

In probability theory, we first assign probability to events

Not individual outcomes-that can be problematic!

- See course notes for details

To each event $A \in \mathcal{F}$, we assign a probability $\mathbb{P}(A)$
$\mathbb{P}(A)$ represents the "probability that event A occurs"

Example

Consider again rolling a dice
The sample space is $\Omega:=\{1, \ldots, 6\}$
We want to assign a probability to any event - any $A \in \mathcal{F}$
To this end we set

$$
\mathbb{P}(A):=\frac{\# A}{6} \quad \text { for each } \quad A \in \mathcal{F}
$$

- \#A := number of elements in A

For example,

$$
\mathbb{P}\{2,4,6\}=\frac{3}{6}=\frac{1}{2}
$$

We want \mathbb{P} to satisfy some axioms...

A probability on (Ω, \mathcal{F}) is a function $\mathbb{P}: \mathcal{F} \rightarrow[0,1]$ that satisfies

1. $\mathbb{P}(\Omega)=1$, and
2. If A and B are disjoint events, then

$$
\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)
$$

Second property is called additivity

Note: Some technical details omitted - see course notes

Example

As before let $\Omega:=\{1, \ldots, 6\}$ and $\mathbb{P}(A):=\# A / 6$
Are the axioms satisfied?

1. $\mathbb{P}(\Omega)=\mathbb{P}\{1, \ldots, 6\}=6 / 6=1$
2. Additivity also holds:

First observe that $A \cap B=\varnothing \quad \Longrightarrow \quad \#(A \cup B)=\# A+\# B$

$$
\therefore \quad \mathbb{P}(A \cup B)=\frac{\#(A \cup B)}{6}=\frac{\# A}{6}+\frac{\# B}{6}=\mathbb{P}(A)+\mathbb{P}(B)
$$

Example

Memory chip is made up of billions of tiny switches/bits

- Switches can be off or on (0 or 1)

Random number generator accesses N bits, switching each one on or off

We take

- $\Omega:=\left\{\left(b_{1}, \ldots, b_{N}\right):\right.$ where b_{n} is 0 or 1 for each $\left.n\right\}$
- $\mathbb{P}(A):=2^{-N}(\# A)$

Ex. Show that \mathbb{P} is a probability

Fact. If \mathbb{P} is a probability and A_{1}, \ldots, A_{J} are disjoint, then

$$
\mathbb{P}\left(\cup_{j=1}^{J} A_{j}\right)=\sum_{j=1}^{J} \mathbb{P}\left(A_{j}\right)
$$

Figure : $\mathbb{P}(A \cup B \cup C)=\mathbb{P}(A)+\mathbb{P}(B)+\mathbb{P}(C)$

Proof for $J=3$: Fixing disjoint A, B, C and observing that

$$
A \cup B \cup C=(A \cup B) \cup C
$$

we have

$$
\mathbb{P}(A \cup B \cup C)=\mathbb{P}((A \cup B) \cup C)
$$

Clearly A, B, C disjoint $\Longrightarrow A \cup B$ and C disjoint Hence

$$
\begin{aligned}
\mathbb{P}((A \cup B) \cup C) & =\mathbb{P}(A \cup B)+\mathbb{P}(C) \\
& =\mathbb{P}(A)+\mathbb{P}(B)+\mathbb{P}(C)
\end{aligned}
$$

Example
Let $\Omega:=\{1, \ldots, 6\}$ and $\mathbb{P}(A):=\# A / 6$ for $A \in \mathcal{F}$

Prob of even is sum of probs of distinct ways we can get an even

$$
\begin{aligned}
\mathbb{P}\{2,4,6\} & =\mathbb{P}[\{2\} \cup\{4\} \cup\{6\}] \\
& =\mathbb{P}\{2\}+\mathbb{P}\{4\}+\mathbb{P}\{6\} \\
& =1 / 6+1 / 6+1 / 6 \\
& =1 / 2
\end{aligned}
$$

Fact. If \mathbb{P} is a probability on \mathcal{F} and $A, B \in \mathcal{F}$ with $A \subset B$, then

$$
\begin{aligned}
& \text { 1. } \mathbb{P}(B \backslash A)=\mathbb{P}(B)-\mathbb{P}(A) \\
& \text { 2. } \mathbb{P}(A) \leq \mathbb{P}(B) \\
& \text { 3. } \mathbb{P}\left(A^{c}\right)=1-\mathbb{P}(A) \\
& \text { 4. } \mathbb{P}(\varnothing)=0
\end{aligned}
$$

Proof: When $A \subset B$, we have $B=(B \backslash A) \cup A$ and hence

$$
\mathbb{P}(B)=\mathbb{P}(B \backslash A)+\mathbb{P}(A)
$$

All results follow (why!?)

Remark: Item 2 is called monotonicity

Figure : Monotonicity: $A \subset B \Longrightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$

Fact. If A and B are any events, then

$$
\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)
$$

Ex. Check the fact using $A=[(A \cup B) \backslash B] \cup(A \cap B)$

Implication: For any $A, B \in \mathcal{F}$, we have

$$
\mathbb{P}(A \cup B) \leq \mathbb{P}(A)+\mathbb{P}(B)
$$

- This is called sub-additivity
- What is the connection with additivity?

Conditional Probability

Let A and B be two events and let \mathbb{P} be a probability

The conditional probability of A given B is defined as

$$
\mathbb{P}(A \mid B):=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

Defined only when $\mathbb{P}(B)>0$
Intuitively,

- We don't know the actual outcome ω
- But we do know that $\omega \in B$
- So what's the probability that $\omega \in A$?

Figure : $\mathbb{P}(A \mid B)=\mathbb{P}(A \cap B) / \mathbb{P}(B)$

Independent Events

Events A and B are called independent if

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

Intuitively, conditioning on independent events provides no additional information

In particular, when $\mathbb{P}(B)>0$,
A, B independent $\Longleftrightarrow \mathbb{P}(A \mid B)=\frac{\mathbb{P}(A) \mathbb{P}(B)}{\mathbb{P}(B)}$

$$
\Longleftrightarrow \mathbb{P}(A \mid B)=\mathbb{P}(A)
$$

Example

Experiment: roll a dice twice.

$$
\Omega:=\{(i, j): i, j \in\{1, \ldots, 6\}\} \quad \text { and } \quad \mathbb{P}(A):=\# A / 36
$$

Now consider the events

$$
A:=\{(i, j) \in \Omega: i \text { is even }\} \quad \text { and } \quad B:=\{(i, j) \in \Omega: j \text { is even }\}
$$

In this case we have

$$
A \cap B=\{(i, j) \in \Omega: i \text { and } j \text { are even }\}
$$

We now show that $\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$
This proves that A and B are independent under the probability \mathbb{P}

Recall that \# of possible $(i, j)=\#$ of possible $i \times \#$ of possible j

Applying this rule gives

- $\# A=3 \times 6=18$
- $\# B=6 \times 3=18$
- $\#(A \cap B)=3 \times 3=9$

$$
\therefore \quad \mathbb{P}(A \cap B)=\frac{9}{36}=\frac{1}{4}=\frac{18}{36} \times \frac{18}{36}=\mathbb{P}(A) \mathbb{P}(B)
$$

Law of Total Probability

A collection of events $\left\{B_{1}, \ldots, B_{M}\right\}$ is called a partition of Ω if

$$
i \neq j \Longrightarrow B_{i} \cap B_{j}=\varnothing \quad \text { and } \quad \cup_{m=1}^{M} B_{m}=\Omega
$$

Fact. If $A \in \mathcal{F}$ and B_{1}, \ldots, B_{M} is a partition of Ω with $\mathbb{P}\left(B_{m}\right)>0$ for all m, then

$$
\mathbb{P}(A)=\sum_{m=1}^{M} \mathbb{P}\left(A \mid B_{m}\right) \cdot \mathbb{P}\left(B_{m}\right)
$$

Proof: Given any such A and partition B_{1}, \ldots, B_{M}, we have

$$
\begin{aligned}
& \mathbb{P}(A)=\mathbb{P}\left[A \cap\left(\cup_{m=1}^{M} B_{m}\right)\right]=\mathbb{P}\left[\cup_{m=1}^{M}\left(A \cap B_{m}\right)\right] \\
&=\sum_{m=1}^{M} \mathbb{P}\left(A \cap B_{m}\right)=\sum_{m=1}^{M} \mathbb{P}\left(A \mid B_{m}\right) \cdot \mathbb{P}\left(B_{m}\right)
\end{aligned}
$$

Example. Suppose NZ in final of WC and IND, AUS in semi

I figure that $\mathbb{P}($ IND beats $A U S)=0.35$ and

$$
\mathbb{P}(N Z \text { beats AUS })=0.4, \quad \mathbb{P}(N Z \text { beats IND })=0.5
$$

Hence

$$
\begin{aligned}
\mathbb{P}(\text { NZ wins })= & \mathbb{P}(\text { NZ wins } \mid \text { plays AUS }) \mathbb{P}(\text { NZ plays AUS }) \\
& +\mathbb{P}(\text { NZ wins } \mid \text { plays IND }) \mathbb{P}(\text { NZ plays IND }) \\
= & 0.4 \times 0.65+0.5 \times 0.35=0.435
\end{aligned}
$$

Bayes' Theorem

The Bayesian approach to statistics rapidly growing in popularity
Example. The Signal and the Noise by Nate Silver

- Successful in forecasting complex events like elections
- Advocates a Bayesian approach to statistics / forecasting

To understand the Bayesian approach consider the saying
"When you hear hooves think horses not zebras"

Meaning: Assess new information through lens of prior knowledge

Fact. If A, B are events with nonzero probability, then

$$
\begin{equation*}
\mathbb{P}(B \mid A)=\frac{\mathbb{P}(A \mid B) \mathbb{P}(B)}{\mathbb{P}(A)} \tag{1}
\end{equation*}
$$

Proof: From

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} \quad \text { and } \quad \mathbb{P}(B \mid A)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}
$$

we have

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A \mid B) \mathbb{P}(B)=\mathbb{P}(B \mid A) \mathbb{P}(A)
$$

Rearranging yields (1)

Example. Banks use automated systems to try to detect fraudulent or illegal transactions

- A field of statistics called novelty detection

Consider a test that responds to each transaction with P or N

- P means "positive" - transaction flagged as fraudulent
- N means "negative" - transaction flagged as normal

Letting F mean fraudulent, we suppose that

- $\mathbb{P}(P \mid F)=0.99$ - flags 99% of fraudulent transactions
- $\mathbb{P}\left(P \mid F^{c}\right)=0.01$ - false positives
- $\mathbb{P}(F)=0.001$ - prevalence of fraud

What is the probability of fraud given a positive test?

We use Bayes rule

$$
\mathbb{P}(F \mid P)=\frac{\mathbb{P}(P \mid F) \mathbb{P}(F)}{\mathbb{P}(P)}
$$

and the law of total probability

$$
\mathbb{P}(P)=\mathbb{P}(P \mid F) \mathbb{P}(F)+\mathbb{P}\left(P \mid F^{c}\right) \mathbb{P}\left(F^{c}\right)
$$

to get

$$
\mathbb{P}(F \mid P)=\frac{0.99 \times 0.001}{0.99 \times 0.001+0.01 \times 0.999}=\frac{11}{122} \approx \frac{1}{11}
$$

Less than one in ten positives are actually fraudulent

