<ロ > < 母 > < 喜 > < 喜 > 言 の へ つ 1/46

ECON2125/4021/8013

Lecture 11

John Stachurski

Semester 1, 2015

Quadratic Forms

Why Probability?

Sample Spaces

Probabilitie

<ロト < 母 ト < 王 ト < 王 ト 三 の へ C 2/46

Conditioning

Announcements

- Midterm exam date finalized
 - Date: 23rd April
 - Place: COP G30
 - Time: 6pm (writing time 6:30-8:30pm)

<ロト < 母 ト < 臣 ト < 臣 ト 王 の < で 3/46

Quadratic Forms

Up till now we have studied linear functions extensively

Next level of complexity is quadratic maps

Let **A** be $N \times N$ and symmetric, and let **x** be $N \times 1$

The quadratic function on \mathbb{R}^N associated with \mathbf{A} is the map

$$Q: \mathbb{R}^N \to \mathbb{R}, \qquad Q(\mathbf{x}) := \mathbf{x}' \mathbf{A} \mathbf{x} = \sum_{j=1}^N \sum_{i=1}^N a_{ij} x_i x_j$$

The properties of Q depend on \mathbf{A}

- An $N \times N$ symmetric matrix \mathbf{A} is called
 - 1. nonnegative definite if $\mathbf{x}' \mathbf{A} \mathbf{x} \ge 0$ for all $\mathbf{x} \in \mathbb{R}^N$
 - 2. positive definite if $\mathbf{x}'\mathbf{A}\mathbf{x} > 0$ for all $\mathbf{x} \in \mathbb{R}^N$ with $\mathbf{x} \neq \mathbf{0}$
 - 3. nonpositive definite if $\mathbf{x}' \mathbf{A} \mathbf{x} \leq 0$ for all $\mathbf{x} \in \mathbb{R}^N$
 - 4. negative definite if $\mathbf{x}' \mathbf{A} \mathbf{x} < 0$ for all $\mathbf{x} \in \mathbb{R}^N$ with $\mathbf{x} \neq \mathbf{0}$

<ロト < 母 ト < 臣 ト < 臣 ト 三 の へ で 4/46

Figure : A positive definite case: $Q(\mathbf{x}) = \mathbf{x}' \mathbf{I} \mathbf{x}$

▲□▶ ▲歴▶ ▲重▶ ▲重▶ 重 ∽へで 5/46

Figure : A negative definite case: $Q(\mathbf{x}) = \mathbf{x}'(-\mathbf{I})\mathbf{x}$

<ロト < 母 ト < 臣 ト < 臣 ト 王 の < で 7/46

Note that some matrices have none of these properties

- $\mathbf{x}'\mathbf{A}\mathbf{x} < 0$ for some \mathbf{x}
- $\mathbf{x}'\mathbf{A}\mathbf{x} > 0$ for other \mathbf{x}

In this case ${\bf A}$ is called indefinite

Figure : Indefinite quadratic function $Q(\mathbf{x}) = x_1^2/2 + 8x_1x_2 + x_2^2/2$

Fact. A symmetric matrix A is

- 1. positive definite \iff all eigenvalues are strictly positive
- 2. negative definite \iff all eigenvalues are strictly negative
- 3. nonpositive definite \iff all eigenvalues are nonpositive
- 4. nonnegative definite \iff all eigenvalues are nonnegative

It follows that

• A is positive definite $\implies det(A) > 0$

In particular, \mathbf{A} is nonsingular

<ロト < 母 > < 臣 > < 臣 > 臣 の < で 9/46

Quadratic Forms

Why Probability?

Sample Spaces

Probabilitie

Conditioning

New Topic

PROBABILITY

4 ロ ト 4 日 ト 4 王 ト 4 王 - うへで 10/46

Quadratic Forms	Why Probability?	Sample Spaces	Probabilities	Conditioning	
		Topics			

4 ロト 4 日 ト 4 王 ト 4 王 ト 王 のへで 11/46

- Probability models
- Random variables
- Expectations
- Distributions
- Independence and dependence
- Asymptotics
- Multivariate models

Motivation

The real world is messy relative to models

• especially econ / finance

In physics / chemistry / engineering, many theories are quite precise

- Hooke's law
- $E = mc^2$
- Ideal gas law
- etc.

The same is not true of models in econ / finance

<ロト < 母 ト < 王 ト < 王 ト 三 の へ C 13/46

Data is "noisy" relative to models

- Not everything can be explained by a given model
- Some events are "unpredictable"

Implication: We should model noise explicitly in order to

- Better match models to data
- Prepare for statistical analysis
- Add information we have about the noise

Good news: noise / randomness itself contains patterns

- Bursts of volatility in financial markets
- Bell shaped curve in abilities, test outcomes, etc.
- "Power law" in size of cities, firms
- Return on equities higher than bonds "on average"

Figure : Volatility of daily returns

Figure : Cumulative return, 1\$ invested in equities or bonds

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 クヘペ 16/46

The role of probability theory:

- Model phenomena that are "not fully predictable"
- Provide concepts for analyzing such phenomena
- Facilitate deductive reasoning in this setting

Example. Oil futures are "riskier" than US treasuries

Example. If event A occurs whenever event B occurs, then the probability of A should be at least as high

Example. A monkey typing randomly at a keyboard will eventually reproduce the entire works of Shakespeare word for word

<ロト < 目 > < 目 > < 目 > 目 の へ で 18/46

Sample Spaces

First step of modeling: list all the things that can happen In probability theory this is called the **sample space**

= set of all possible outcomes in a random experiment

- can be any nonempty set
- typically denoted Ω
- typical element of Ω denoted ω

A subset of Ω is also called an $\ensuremath{\text{event}}$

Figure : Sample space

(日) (日) (日) (日) (日) (日) (日)

19/46

Let ${\mathcal F}$ denote set of all events

For example, $\varnothing \in \mathcal{F}$ and $\Omega \in \mathcal{F}$

Example

Consider an experiment where we roll a dice

We let $\Omega := \{1, \dots, 6\}$ represent the set of possible outcomes

A typical outcome is

$$\omega = 4$$

A typical element of ${\mathcal F}$ is

 $A := \{2, 4, 6\} = \{ \text{ an even face } \}$

<ロト</th>
 < 目 > < 目 > < 目 > < 目 > < 20/46</th>

The idea "event A occurs" means that

when $\omega \in \Omega$ is selected by "nature," $\omega \in A$

Example

Consider again the experiment where we roll a dice

As before let $\Omega:=\{1,\ldots,6\}$

Let \boldsymbol{A} be the event

$$\{2,4,6\} = \{ an even face \}$$

"A occurs" means ω is one of 2, 4, 6

<ロト < 母 ト < 三 ト < 三 ト 三 の へ C 21/46

Figure : Event A occurs

<ロト < 母ト < 臣ト < 臣ト 王 のへで 22/46

Q	а	ra	at	С	F		r	S		

Figure : Event A does not occur (but A^c does)

<ロト < 母 ト < 王 ト < 王 ト 三 の へ C 24/46

Probabilities

In probability theory, we first assign probability to events

Not individual outcomes-that can be problematic!

• See course notes for details

To each event $A \in \mathcal{F}$, we assign a probability $\mathbb{P}(A)$

 $\mathbb{P}(A)$ represents the "probability that event A occurs"

Example

Consider again rolling a dice

The sample space is $\Omega := \{1, \ldots, 6\}$

We want to assign a probability to any event — any $A \in \mathcal{F}$ To this end we set

$$\mathbb{P}(A):=rac{\#A}{6}$$
 for each $A\in\mathcal{F}$

• #A := number of elements in A

For example,

$$\mathbb{P}\{2,4,6\} = \frac{3}{6} = \frac{1}{2}$$

<ロト < 母 ト < 三 ト < 三 ト 三 の へ C 25/46

We want $\mathbb P$ to satisfy some axioms...

A probability on (Ω, \mathcal{F}) is a function $\mathbb{P} \colon \mathcal{F} \to [0, 1]$ that satisfies

- 1. $\mathbb{P}(\Omega) = 1$, and
- 2. If A and B are disjoint events, then

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$$

Second property is called additivity

Note: Some technical details omitted — see course notes

Example

As before let
$$\Omega := \{1, \dots, 6\}$$
 and $\mathbb{P}(A) := \#A/6$

Are the axioms satisfied?

1.
$$\mathbb{P}(\Omega) = \mathbb{P}\{1, \dots, 6\} = 6/6 = 1$$

2. Additivity also holds:

First observe that $A \cap B = \emptyset \implies \#(A \cup B) = \#A + \#B$

:.
$$\mathbb{P}(A \cup B) = \frac{\#(A \cup B)}{6} = \frac{\#A}{6} + \frac{\#B}{6} = \mathbb{P}(A) + \mathbb{P}(B)$$

<ロト < 母 ト < 主 ト < 主 ト 三 の へ C 27/46

Quadratic Forms	Why Probability?	Sample Spaces	Probabilities	Conditioning
Example				

Memory chip is made up of billions of tiny switches/bits

• Switches can be off or on (0 or 1)

Random number generator accesses \boldsymbol{N} bits, switching each one on or off

(ロ)、(日)、(三)、(三)、(三)、(三)、(28/46)

We take

- $\Omega := \{(b_1, \ldots, b_N) : \text{where } b_n \text{ is } 0 \text{ or } 1 \text{ for each } n\}$
- $\mathbb{P}(A) := 2^{-N}(\#A)$

Ex. Show that \mathbb{P} is a probability

Fact. If \mathbb{P} is a probability and A_1, \ldots, A_l are disjoint, then

$$\mathbb{P}\left(\cup_{j=1}^{J}A_{j}\right) = \sum_{j=1}^{J}\mathbb{P}(A_{j})$$

Figure : $\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C)$

・ロト ・ (日) ・ (目) ・ (目) ・ 目 ・ (の) へ (29/46)

Proof for J = 3: Fixing disjoint A, B, C and observing that $A \cup B \cup C = (A \cup B) \cup C$

we have

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}((A \cup B) \cup C)$$

Clearly A, B, C disjoint $\implies A \cup B$ and C disjoint Hence

$$\mathbb{P}((A \cup B) \cup C) = \mathbb{P}(A \cup B) + \mathbb{P}(C)$$
$$= \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C)$$

<ロト</th>
 < 目 > < 目 > < 目 > < 目 > < 30/46</th>

Quad	ratic Forms	vvny Probability:	Sample Spaces	Probabilities	Conditioning
	Example				
	Let $\Omega := \{1,$,,6} and $\mathbb{P}(A)$:= # $A/6$ for A	$\in \mathcal{F}$	

Prob of even is sum of probs of distinct ways we can get an even

$$\mathbb{P}\{2,4,6\} = \mathbb{P}[\{2\} \cup \{4\} \cup \{6\}]$$
$$= \mathbb{P}\{2\} + \mathbb{P}\{4\} + \mathbb{P}\{6\}$$
$$= 1/6 + 1/6 + 1/6$$
$$= 1/2$$

<ロト < 回 ト < 三 ト < 三 ト 三 の へ で 31/46

(ロ)、(日)、(三)、(三)、(三)、(2)、(32/46)

Fact. If \mathbb{P} is a probability on \mathcal{F} and $A, B \in \mathcal{F}$ with $A \subset B$, then

1.
$$\mathbb{P}(B \setminus A) = \mathbb{P}(B) - \mathbb{P}(A)$$

2. $\mathbb{P}(A) \le \mathbb{P}(B)$
3. $\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$
4. $\mathbb{P}(\emptyset) = 0$

Proof: When $A \subset B$, we have $B = (B \setminus A) \cup A$ and hence

$$\mathbb{P}(B) = \mathbb{P}(B \setminus A) + \mathbb{P}(A)$$

All results follow (why!?)

Remark: Item 2 is called monotonicity

Quadratic Forms	Why Probability?	Sample Spaces	Probabilities	Conditioning

Figure : Monotonicity: $A \subset B \implies \mathbb{P}(A) \leq \mathbb{P}(B)$

<ロト < 戸 ト < 王 ト < 王 ト 王 · ク < で 33/46

Fact. If A and B are any events, then

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

Ex. Check the fact using
$$A = [(A \cup B) \setminus B] \cup (A \cap B)$$

Implication: For any $A, B \in \mathcal{F}$, we have

 $\mathbb{P}(A \cup B) \le \mathbb{P}(A) + \mathbb{P}(B)$

- This is called sub-additivity
- What is the connection with additivity?

<ロト < 母 ト < 王 ト < 王 ト 三 の へ C 34/46

Conditional Probability

Let A and B be two events and let \mathbb{P} be a probability

The conditional probability of A given B is defined as

$$\mathbb{P}(A \mid B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Defined only when $\mathbb{P}(B) > 0$

Intuitively,

- We don't know the actual outcome ω
- But we do know that $\omega \in B$
- So what's the probability that $\omega \in A$?

	1		
Jua	drat	ic F	orms

Why Probability?

Sample Spaces

Probabilities

Conditioning

Figure : $\mathbb{P}(A \mid B) = \mathbb{P}(A \cap B) / \mathbb{P}(B)$

Independent Events

Events A and B are called **independent** if

 $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$

Intuitively, conditioning on independent events provides no additional information

In particular, when $\mathbb{P}(B) > 0$,

A, B independent
$$\iff \mathbb{P}(A \mid B) = \frac{\mathbb{P}(A)\mathbb{P}(B)}{\mathbb{P}(B)}$$

 $\iff \mathbb{P}(A \mid B) = \mathbb{P}(A)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Experiment: roll a dice twice.

 $\Omega := \{(i, j) : i, j \in \{1, \dots, 6\}\} \text{ and } \mathbb{P}(A) := \#A/36$

Now consider the events

 $A := \{(i, j) \in \Omega : i \text{ is even}\}$ and $B := \{(i, j) \in \Omega : j \text{ is even}\}$

In this case we have

 $A \cap B = \{(i, j) \in \Omega : i \text{ and } j \text{ are even}\}$

We now show that $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$

This proves that A and B are independent under the probability \mathbb{P}

Quadratic Forms	Why Probability?	Sample Spaces	Probabilities	Conditioning
Decall the	. +			

Recall that

of possible (i, j) =# of possible $i \times$ # of possible j

Applying this rule gives

• $#A = 3 \times 6 = 18$

•
$$\#B = 6 \times 3 = 18$$

•
$$\#(A \cap B) = 3 \times 3 = 9$$

:.
$$\mathbb{P}(A \cap B) = \frac{9}{36} = \frac{1}{4} = \frac{18}{36} \times \frac{18}{36} = \mathbb{P}(A)\mathbb{P}(B)$$

Law of Total Probability

A collection of events $\{B_1, \ldots, B_M\}$ is called a **partition** of Ω if

 $i \neq j \implies B_i \cap B_j = \emptyset$ and $\cup_{m=1}^M B_m = \Omega$

<ロト < 母 ト < 臣 ト < 臣 ト 王 の へ で 40/46

Fact. If $A \in \mathcal{F}$ and B_1, \ldots, B_M is a partition of Ω with $\mathbb{P}(B_m) > 0$ for all m, then

$$\mathbb{P}(A) = \sum_{m=1}^{M} \mathbb{P}(A \mid B_m) \cdot \mathbb{P}(B_m)$$

Proof: Given any such A and partition B_1, \ldots, B_M , we have

$$\mathbb{P}(A) = \mathbb{P}[A \cap (\bigcup_{m=1}^{M} B_m)] = \mathbb{P}[\bigcup_{m=1}^{M} (A \cap B_m)]$$
$$= \sum_{m=1}^{M} \mathbb{P}(A \cap B_m) = \sum_{m=1}^{M} \mathbb{P}(A \mid B_m) \cdot \mathbb{P}(B_m)$$

<ロト 4 週 ト 4 差 ト 4 差 ト 差 の 9 9 9 41/46

Example. Suppose NZ in final of WC and IND, AUS in semi

I figure that $\mathbb{P}(\mathsf{IND} \text{ beats AUS}) = 0.35$ and

 $\mathbb{P}(\mathsf{NZ} \text{ beats AUS}) = 0.4, \qquad \mathbb{P}(\mathsf{NZ} \text{ beats IND}) = 0.5$

Hence

 $\mathbb{P}(\mathsf{NZ wins}) = \mathbb{P}(\mathsf{NZ wins} \mid \mathsf{plays} \mathsf{AUS})\mathbb{P}(\mathsf{NZ plays} \mathsf{AUS})$ $+ \mathbb{P}(\mathsf{NZ wins} \mid \mathsf{plays} \mathsf{IND})\mathbb{P}(\mathsf{NZ plays} \mathsf{IND})$ $= 0.4 \times 0.65 + 0.5 \times 0.35 = 0.435$

Bayes' Theorem

The Bayesian approach to statistics rapidly growing in popularity Example. The Signal and the Noise by Nate Silver

- Successful in forecasting complex events like elections
- Advocates a Bayesian approach to statistics / forecasting

To understand the Bayesian approach consider the saying

"When you hear hooves think horses not zebras"

Meaning: Assess new information through lens of prior knowledge

Sample Space

Fact. If *A*, *B* are events with nonzero probability, then

$$\mathbb{P}(B \mid A) = \frac{\mathbb{P}(A \mid B)\mathbb{P}(B)}{\mathbb{P}(A)}$$
(1)

Proof: From

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$
 and $\mathbb{P}(B|A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$

we have

$$\mathbb{P}(A \cap B) = \mathbb{P}(A|B) \mathbb{P}(B) = \mathbb{P}(B|A) \mathbb{P}(A)$$

Rearranging yields (1)

<ロト < 母 ト < 王 ト · 王 · つへで 44/46

Example. Banks use automated systems to try to detect fraudulent or illegal transactions

• A field of statistics called novelty detection

Consider a test that responds to each transaction with P or N

- *P* means "positive" transaction flagged as fraudulent
- N means "negative" transaction flagged as normal

Letting F mean fraudulent, we suppose that

- $\mathbb{P}(P \mid F) = 0.99$ flags 99% of fraudulent transactions
- $\mathbb{P}(P \mid F^c) = 0.01 \text{false positives}$
- $\mathbb{P}(F) = 0.001$ prevalence of fraud

What is the probability of fraud given a positive test?

Quadratic Forms	Why Probability?	Sample Spaces	Probabilities	Conditioning

We use Bayes rule

$$\mathbb{P}(F \mid P) = \frac{\mathbb{P}(P \mid F)\mathbb{P}(F)}{\mathbb{P}(P)}$$

and the law of total probability

$$\mathbb{P}(P) = \mathbb{P}(P \mid F)\mathbb{P}(F) + \mathbb{P}(P \mid F^{c})\mathbb{P}(F^{c})$$

to get

$$\mathbb{P}(F \mid P) = \frac{0.99 \times 0.001}{0.99 \times 0.001 + 0.01 \times 0.999} = \frac{11}{122} \approx \frac{1}{11}$$

Less than one in ten positives are actually fraudulent