<ロ > < 母 > < 喜 > < 喜 > 言 の Q で 1/37

ECON2125/4021/8013

Lecture 14

John Stachurski

Semester 1, 2015

Announcements

No tutorials on Friday

Consultation times over the break =

- Qingyin Ma: 3:00-5:00 Fridays (as usual)
- Guanlong Ren: 4:00-6:00 Thursdays (changed)
- John S: 9:00-11:00 Mondays (as usual)

More solved exercises coming

- One more set, on probability
- Will appear on GitHub site by Monday evening

Comments on Exam Questions

Mainly small proofs/arguments requiring only a few steps of logic

In general, good answers will

- include relevant definitions
- use relevant facts from slides
- avoid long and difficult calculations there's probably an easier way

Use of external theorems is discouraged

- You won't need them
- Don't tell me it's true because you saw it in a book

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の < ④ 4/37

Sample question, worth five marks:

Q: Let ${\bf A}$ be any matrix. Show that the symmetric matrix ${\bf A}'{\bf A}$ is nonnegative definite

What is a good answer to this question?

A1 I love Kung Fu

- Mark: 0/5
- Why: Irrelevant

LLN

A2 $N \times N$ symmetric matrix **B** is nonnegative definite if $\mathbf{x}'\mathbf{B}\mathbf{x} \ge 0$ for any $N \times 1$ vector \mathbf{x} . I don't know the rest.

- Mark: 2/5
- Why: Gave the relevant definition

A3 $N \times N$ symmetric matrix **B** is nonnegative definite if $\mathbf{x}'\mathbf{B}\mathbf{x} \ge 0$ for any $N \times 1$ vector \mathbf{x} . Strictly concave functions have unique minima. A set is a collection of objects. Sharks continue to swim while sleeping.

- Mark: 1/5
- Why: One relevant definition cancelled out by other noise

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の Q (P 6/37

A4. By definition, an $N \times N$ symmetric matrix ${\bf B}$ is nonnegative definite if

$$\mathbf{x}'\mathbf{B}\mathbf{x} \ge 0$$
 for any $N \times 1$ vector \mathbf{x} (*)

Let $B:=\mathbf{A}'\mathbf{A}$ and fix any such x. By the rules of transposes we have

$$\mathbf{x}'\mathbf{B}\mathbf{x} = \mathbf{x}'\mathbf{A}'\mathbf{A}\mathbf{x} = (\mathbf{A}\mathbf{x})'(\mathbf{A}\mathbf{x}) \ge 0$$

Here last equality holds because, for any vector \mathbf{y} ,

$$\mathbf{y'y} = \sum_{n=1}^N y_n^2 \ge 0$$

This confirms (*)

- Mark: 5/5
- Why: Correct and crystal clear

Further Comments

Assessable topics for midterm exam = lecture slides 1-14

Who will mark and with what expectations?

l will

- write all of mid-term and final exams
- write solutions as guidelines, discuss with tutors

Tutors will

• do most of the actual marking, based on my solutions and guidelines

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の < で 8/37

LLN

Background: Convergence and Continuity

Loosely speaking, a sequence $\{x_n\}$ converges to $x \in \mathbb{R}$ if

 x_n gets "arbitrarily close" to x as $n \to \infty$

Example. If $x_n = 2 + 1/n$ then $x_n \to 2$ as $n \to \infty$

Comments

- · We'll give a more careful definition in a later lecture
- "Close" means that $|x_n x|$ is small

A function $f: \mathbb{R} \to \mathbb{R}$ is continuous at x if, for any $\{x_n\}$ with $x_n \to x$, we have

 $f(x_n) \to f(x)$

<ロト < 団 > < 臣 > < 臣 > 王 の へ で 9/37

LLN

Independence

Random variables X_1, \ldots, X_N are called **independent** if, for all $(x_1, \ldots, x_N) \in \mathbb{R}^N$,

$$\mathbb{P}\{X_1 \leq x_1, \dots, X_N \leq x_N\} = \prod_{n=1}^N \mathbb{P}\{X_n \leq x_n\}$$

Equivalently, if X_1, \ldots, X_N are RVs with

- marginal distributions $\Phi_1, \ldots \Phi_N$
- joint distribution F

then independent iff

$$F(x_1,\ldots,x_N) = \prod_{n=1}^N \Phi_n(x_n)$$

An infinite sequence $\{X_n\}$ is called independent if any finite subset is independent

If all marginals of the X_n 's are the same, they are called **identically distributed**

$$\Phi_1 = \cdots = \Phi_N = \Phi$$

"Independent and identically distributed" usually abbreviated to IID

If $\{X_n\}$ is IID with common cdf Φ we write $\{X_n\} \stackrel{\text{IID}}{\sim} \Phi$

The joint distribution of X_1, \ldots, X_N is then

$$F(x_1,\ldots,x_N)=\prod_{n=1}^N\Phi(x_n)$$

<ロト < 回 ト < 三 ト < 三 ト 三 の へ C 11/37

Fact. For X_1, \ldots, X_N with marginal densities ϕ_1, \ldots, ϕ_N and joint density p,

$$X_1, \ldots, X_N$$
 independent $\iff p(x_1, \ldots, x_N) = \prod_{n=1}^N \phi_n(x_n)$

Example. If X_1, X_2 are RVs with $p(x_1, x_2) = \phi_1(x_1)\phi_2(x_2)$, then

$$F(x_1, x_2) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} p(s, t) \, dt \, ds$$

$$= \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} \phi_1(s) \phi_2(t) \, dt \, ds$$

$$= \int_{-\infty}^{x_1} \phi_1(s) ds \, \int_{-\infty}^{x_2} \phi_2(t) dt = \Phi_1(x_1) \Phi_2(x_2)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fact. If X_1, \ldots, X_N are independent, then

$$\mathbb{E}\left[\prod_{n=1}^{N} X_{n}\right] = \prod_{n=1}^{N} \mathbb{E}\left[X_{n}\right]$$

It follows that if X and Y are independent, then cov[X, Y] = 0

Proof: If X and Y are RVs with $\mathbb{E}[X] = \mu_X$, $\mathbb{E}[Y] = \mu_Y$ then $\operatorname{cov}[X, Y] = \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$ $= \mathbb{E}[XY - X\mu_Y - Y\mu_X + \mu_X\mu_Y]$ $= \mathbb{E}[XY] - \mu_X\mu_Y$ $= \mathbb{E}[X]\mathbb{E}[Y] - \mu_X\mu_Y = 0$

<ロト < 目 > < 目 > < 目 > 目 の へ で 13/37

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の へ ⁽⁾ 14/37

The converse is not generally true However.

multivariate normal & zero covariance \implies independence

Indeed, suppose

- $\mathbf{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- $\operatorname{cov}[X_i, X_j] = 0$ unless i = j

Since Σ is the variance covariance matrix, this means Σ must be diagonal

$$\boldsymbol{\Sigma} = \operatorname{diag}(\sigma_1^2, \sigma_2^2, \dots, \sigma_N^2)$$

Independence

Asymptotic

< □ ▶ < 冊 ▶ < 差 ▶ < 差 ▶ 差 ∽ ♀ ♡ へ ⁰ 15/37

LLN

Using our facts about diagonal matrices we have

$$p(\mathbf{x}) = (2\pi)^{-N/2} \operatorname{det}(\mathbf{\Sigma})^{-1/2} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})'\mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

$$= \frac{1}{(2\pi)^{N/2} \prod_{n=1}^{N} \sigma_n} \exp\left\{-\frac{1}{2} \sum_{n=1}^{N} (x_n - \mu_n)^2 \sigma_n^{-2}\right\}$$

$$= \prod_{n=1}^{N} \frac{1}{(2\pi)^{1/2} \sigma_n} \exp\left\{\frac{-(x_n - \mu_n)^2}{2\sigma_n^2}\right\}$$

$$=\prod_{n=1}^N \phi_n(x_n)$$
 where $\phi_n=$ density of $N(\mu_n,\sigma_n^2)$

Hence independent

Convergence in Probability

Let

- $\{X_n\}$ be a sequence of RVs
- X another RV or a constant

The sequence $\{X_n\}$ converges to X in probability if

$$orall \delta > 0, \qquad \mathbb{P}\{|X_n - X| > \delta\} o 0 \quad \text{as} \quad n o \infty$$

We write $X_n \xrightarrow{p} X$

Example. If $X_n \sim N(\alpha, 1/n)$, then $X_n \xrightarrow{p} \alpha$

<ロト < 母 ト < 三 ト < 三 ト 三 の へ で 16/37

Independence

Asymptotics

Averages

LLN

We can see this visually

<ロト < 昂ト < 喜ト < 喜ト 差 · うへで 17/37

Independence

Asymptotics

Averages

LLN

We can see this visually

Figure :
$$\mathbb{P}\{|X_n - \alpha| > \delta\} \to 0$$

<ロト < 母 ト < 臣 ト < 臣 ト 三 のへで 18/37

We can see this visually

Figure :
$$\mathbb{P}\{|X_n - \alpha| > \delta\} \to 0$$

<ロト < 昂ト < 喜ト < 喜ト 差 の < ? 19/37

Independence

Asymptotics

Averages

LLN

Let's also check it formally, using this well known fact

Fact. If Y is any nonnegative random variable and $\theta > 0$, then

$$\mathbb{P}\{Y \ge \theta\} \le \frac{\mathbb{E}\left[Y\right]}{\theta}$$

Proof: We have

$$Y \geq Y \mathbb{1}\{Y \geq \theta\} \geq \theta \mathbb{1}\{Y \geq \theta\}$$

Hence, by monotonicity and linearity of ${\mathbb E}$,

 $\mathbb{E}\left[Y\right] \geq \mathbb{E}\left[\theta \mathbbm{1}\left\{Y \geq \theta\right\}\right] = \theta \mathbb{E}\left[\mathbbm{1}\left\{Y \geq \theta\right\}\right] = \theta \mathbb{P}\left\{Y \geq \theta\right\}$

<ロト < 回 ト < E ト < E ト E の Q C 21/37

Now let $X_n \sim N(\alpha, 1/n)$ as before, fix $\delta > 0$

Observe that

$$\{|X_n - \alpha| > \delta\} = \{(X_n - \alpha)^2 > \delta^2\}$$

As a result, we have

$$\mathbb{P}\{|X_n - \alpha| > \delta\} = \mathbb{P}\{(X_n - \alpha)^2 > \delta^2\}$$
$$\leq \frac{\mathbb{E}\left[(X_n - \alpha)^2\right]}{\delta^2}$$
$$= \frac{1}{n\delta^2}$$
$$\to 0$$

Sample Averages

It's often said that diversified portfolios are "less risky"

For example, let

- X_n be the payoff from holding asset n
- $\mathbb{E}[X_n] = \mu$
- $\operatorname{var}[X_n] = \sigma^2$
- $\operatorname{cov}[X_j, X_k] = 0$ when $j \neq k$

If we hold just X_1 expected payoff is μ and variance is σ^2

If hold $Y = X_1/2 + X_2/2$ then mean is still μ but variance is

$$\operatorname{var}[Y] = \operatorname{var}[X_1/2 + X_2/2] = \frac{\sigma^2}{4} + \frac{\sigma^2}{4} = \frac{\sigma^2}{2}$$

Comments on Exam

LLN

More generally, if $\bar{X}_N := \frac{1}{N} \sum_{n=1}^N X_n$ then

$$\mathbb{E}\left[\bar{X}_{N}\right] = \mathbb{E}\left[\frac{1}{N}\sum_{n=1}^{N}X_{n}\right] = \frac{1}{N}\sum_{n=1}^{N}\mathbb{E}\left[X_{n}\right] = \mu$$

but

$$\mathbb{E}\left[(\bar{X}_N - \mu)^2\right] = \mathbb{E}\left\{\left[\frac{1}{N}\sum_{i=1}^N (X_i - \mu)\right]^2\right\}$$

$$= \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \mathbb{E} (X_i - \mu) (X_j - \mu)$$

$$=\frac{1}{N^2}\sum_{i=1}^N \mathbb{E} \left(X_i - \mu\right)^2 = \frac{\sigma^2}{N}$$

<ロト < 目 ト < 目 ト < 目 ト 目 の Q C 23/37

Hence for this portfolio

- 1. the mean stays the same
- 2. variance of the portfolio goes to zero with N

Note the key step

$$\frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \mathbb{E} \left(X_i - \mu \right) (X_j - \mu) = \frac{1}{n^2} \sum_{i=1}^n \mathbb{E} \left(X_i - \mu \right)^2$$

<ロト < @ ト < 三 ト < 三 ト 三 の へ C 24/37

depends crucially on lack of correlation

If correlation is present the same argument doesn't work

Example. The subprime crisis

Law of Large Numbers

The next fact is called the (weak) law of large numbers (LLN)

Fact. Let $\{X_n\} \stackrel{\text{IID}}{\sim} F.$ If $\int_{-\infty}^\infty |x| F(dx) < \infty$ then

$$\frac{1}{N}\sum_{n=1}^{N}X_{n}\xrightarrow{p}\mu \quad \text{as} \quad N\to\infty$$

where

$$\mu := \mathbb{E}\left[X_n\right] = \int_{-\infty}^{\infty} x F(dx)$$

26/37

Figure : Example. Student *t* distributed RVs

LLN

Figure : Example. Poisson distributed RVs

LLN

 \bar{X}_N for $X_n \sim \text{beta}(2, 2)$ 1.0 0.8 0.6 (Q Ψ 0.4 0.2 0.0 L 20 40 60 80 100

Figure : Example. Beta distributed RVs

Independence

Asymptotic

Proof of the LLN for the case $var[X_n] = \sigma^2 < \infty$ We saw before that

$$\mathbb{E}\left[(\bar{X}_N - \mu)^2\right] = \frac{\sigma^2}{N}$$

and

$$\mathbb{P}\{(\bar{X}_N - \mu)^2 > \delta^2\} \le \frac{\mathbb{E}\left[(\bar{X}_N - \mu)^2\right]}{\delta^2}$$

Therefore

$$\mathbb{P}\{|\bar{X}_N - \mu| > \delta\} = \mathbb{P}\{(\bar{X}_N - \mu)^2 > \delta^2\} \le \frac{\sigma^2}{N\delta^2}$$
$$\therefore \quad \mathbb{P}\{|\bar{X}_N - \mu| > \delta\} \to 0 \quad \text{as} \quad N \to \infty$$

<ロト<日

ト<三ト

ト

< 三ト

三

う

へ

つ

く

29/37

The LLN is more general than it looks

Fact. If $\{X_n\} \stackrel{\text{\tiny ID}}{\sim} F$ and $h \colon \mathbb{R} \to \mathbb{R}$ with $\int |h(x)| F(dx) < \infty$

then

$$\frac{1}{N}\sum_{n=1}^{N}h(X_n) \xrightarrow{p} \int h(x)F(dx)$$

Proof: Apply LLN to $Y_n := h(X_n)$

Example. Set $h(x) = x^2$ to get

$$\frac{1}{N}\sum_{n=1}^{N}X_{n}^{2}\xrightarrow{p}\int x^{2}F(dx) \quad \text{as} \quad N\to\infty$$

Independence

Asymptotic

Averag

LLN

Example. I have a model that tells me the distribution of household wealth in 5 years will be equal to the distribution of

$$Y = \log(\cos(X+1)^2 + \exp(X)^{1/2} + 5)$$

where

 $X \sim N(0, 1)$

Since Y is a well defined RV it has a cdf

$$G(y) := \mathbb{P}\{Y \le y\}$$

I want to know $\mathbb{E}[Y] = \int yG(dy)$ but how to calculate it? Easiest way is simulation

nents on Exam	Independence Asymptotics Averages	LLN
In [1]:	import numpy as np	
In [2]:	X = np.random.randn(1e6) # 10 ⁶ N(0,1) draws	
In [3]:	<pre>temp = np.cos(X+1)**2 + np.sqrt(np.exp(X))</pre>	
In [4]:	Y = np.log(temp + 5)	
In [5]: Out[5]:	np.mean(Y) 1.8837663629867571	

This is a sample mean of 10^6 draws Y_n

The sample mean is close to the true mean by the LLN

Use same idea to get variance, standard deviation, median, etc.

Independence

Asymptotics

Averag

LLN

LLN applies to probabilities as well

Example. Given any $x \in \mathbb{R}$,

$$\frac{1}{N}\sum_{n=1}^{N}\mathbb{1}\{X_n \le x\} \xrightarrow{p} F(x)$$

Proof: Let $h(s) := \mathbb{1}\{s \le x\}$

We then have

$$\mathbb{E}[h(X_n)] = \mathbb{E}[\mathbb{1}\{X_n \le x\}] = \mathbb{P}\{X_n \le x\} = F(x)$$

Hence, by the previous fact,

$$\frac{1}{N}\sum_{n=1}^{N}\mathbb{1}\{X_n \le x\} = \frac{1}{N}\sum_{n=1}^{N}h(X_n) \xrightarrow{p} \mathbb{E}\left[h(X_n)\right] = F(x)$$

<ロト < 母 ト < 臣 ト < 臣 ト 三 の へ で 33/37

Failure of the LLN

We discussed how the LLN can fail when there's correlation

In fact the LLN can still work if correlations die out sufficiently quickly

• e.g.,
$$\operatorname{cov}[X_j, X_{j+k}] \to 0$$
 quickly as $k \to \infty$

The other important assumption is

$$\int_{-\infty}^{\infty} |x| F(dx) < \infty$$

Conversely, with very heavy tailed distributions the LLN can fail

Individual extreme observations dominate the average

Example. Recall the Cauchy distribution

$$F(x) = \arctan(x)/\pi + 1/2$$
 and $p(x) = \frac{1}{\pi(1+x^2)}$

In this case it's known that

$$\int_{-\infty}^{\infty} |x| F(dx) := \int_{-\infty}^{\infty} |x| p(x) dx = \infty$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 35/37

In fact for Cauchy samples the LLN always fails

(Proof omitted)

LLN

4 ロ ト 4 日 ト 4 王 ト 4 王 う 4 で 36/37

Comments on Exam	Independence	Asymptotics	Averages	LLN

<ロト < 目 > < 目 > < 王 > < 王 > ○へ ? 37/37