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Announcements

No tutorials on Friday

Consultation times over the break =

• Qingyin Ma: 3:00-5:00 Fridays (as usual)

• Guanlong Ren: 4:00-6:00 Thursdays (changed)

• John S: 9:00-11:00 Mondays (as usual)

More solved exercises coming

• One more set, on probability

• Will appear on GitHub site by Monday evening
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Comments on Exam Questions

Mainly small proofs/arguments requiring only a few steps of logic

In general, good answers will

• include relevant definitions

• use relevant facts from slides

• avoid long and difficult calculations — there’s probably an
easier way

Use of external theorems is discouraged

• You won’t need them

• Don’t tell me it’s true because you saw it in a book
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Sample question, worth five marks:

Q: Let A be any matrix. Show that the symmetric matrix A′A is
nonnegative definite

What is a good answer to this question?

A1 I love Kung Fu

• Mark: 0/5

• Why: Irrelevant
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A2 N × N symmetric matrix B is nonnegative definite if x′Bx ≥ 0
for any N × 1 vector x. I don’t know the rest.

• Mark: 2/5

• Why: Gave the relevant definition

A3 N × N symmetric matrix B is nonnegative definite if x′Bx ≥ 0
for any N × 1 vector x. Strictly concave functions have unique
minima. A set is a collection of objects. Sharks continue to swim
while sleeping.

• Mark: 1/5

• Why: One relevant definition cancelled out by other noise
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A4. By definition, an N × N symmetric matrix B is nonnegative
definite if

x′Bx ≥ 0 for any N × 1 vector x (?)

Let B := A′A and fix any such x. By the rules of transposes we
have

x′Bx = x′A′Ax = (Ax)′(Ax) ≥ 0

Here last equality holds because, for any vector y,

y′y =
N

∑
n=1

y2
n ≥ 0

This confirms (?)

• Mark: 5/5

• Why: Correct and crystal clear
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Further Comments

Assessable topics for midterm exam = lecture slides 1–14

Who will mark and with what expectations?

I will

• write all of mid-term and final exams

• write solutions as guidelines, discuss with tutors

Tutors will

• do most of the actual marking, based on my solutions and
guidelines
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Background: Convergence and Continuity

Loosely speaking, a sequence {xn} converges to x ∈ R if

xn gets “arbitrarily close” to x as n→ ∞

Example. If xn = 2 + 1/n then xn → 2 as n→ ∞

Comments

• We’ll give a more careful definition in a later lecture

• “Close” means that |xn − x| is small
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A function f : R→ R is continuous at x if, for any {xn} with
xn → x, we have

f (xn)→ f (x)

xn x

f

f (x)

f (xn)
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Independence

Random variables X1, . . . , XN are called independent if, for all
(x1, . . . , xN) ∈ RN,

P{X1 ≤ x1, . . . , XN ≤ xN} =
N

∏
n=1

P{Xn ≤ xn}

Equivalently, if X1, . . . , XN are RVs with

• marginal distributions Φ1, . . . ΦN

• joint distribution F

then independent iff

F(x1, . . . , xN) =
N

∏
n=1

Φn(xn)
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An infinite sequence {Xn} is called independent if any finite subset
is independent

If all marginals of the Xn’s are the same, they are called
identically distributed

Φ1 = · · · = ΦN = Φ

“Independent and identically distributed” usually abbreviated to iid

If {Xn} is iid with common cdf Φ we write {Xn} iid∼ Φ

The joint distribution of X1, . . . , XN is then

F(x1, . . . , xN) =
N

∏
n=1

Φ(xn)
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Fact. For X1, . . . , XN with marginal densities φ1, . . . , φN and joint
density p,

X1, . . . , XN independent ⇐⇒ p(x1, . . . , xN) =
N

∏
n=1

φn(xn)

Example. If X1, X2 are RVs with p(x1, x2) = φ1(x1)φ2(x2), then

F(x1, x2) =
∫ x1

−∞

∫ x2

−∞
p(s, t) dt ds

=
∫ x1

−∞

∫ x2

−∞
φ1(s)φ2(t) dt ds

=
∫ x1

−∞
φ1(s)ds

∫ x2

−∞
φ2(t)dt = Φ1(x1)Φ2(x2)
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Fact. If X1, . . . , XN are independent, then

E

[
N

∏
n=1

Xn

]
=

N

∏
n=1

E [Xn]

It follows that if X and Y are independent, then cov[X, Y] = 0

Proof: If X and Y are RVs with E [X] = µX, E [Y] = µY then

cov[X, Y] = E [(X− µX)(Y− µY)]

= E [XY− XµY −YµX + µXµY]

= E [XY]− µXµY

= E [X]E [Y]− µXµY = 0
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The converse is not generally true

However,

multivariate normal & zero covariance =⇒ independence

Indeed, suppose

• X ∼ N(µ, Σ)

• cov[Xi, Xj] = 0 unless i = j

Since Σ is the variance covariance matrix, this means Σ must be
diagonal

Σ = diag(σ2
1 , σ2

2 , . . . , σ2
N)
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Using our facts about diagonal matrices we have

p(x) = (2π)−N/2 det(Σ)−1/2 exp
{
−1

2
(x− µ)′Σ−1(x− µ)

}

=
1

(2π)N/2 ∏N
n=1 σn

exp

{
−1

2

N

∑
n=1

(xn − µn)
2σ−2

n

}

=
N

∏
n=1

1
(2π)1/2σn

exp
{−(xn − µn)2

2σ2
n

}

=
N

∏
n=1

φn(xn) where φn = density of N(µn, σ2
n)

Hence independent
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Convergence in Probability

Let

• {Xn} be a sequence of RVs

• X another RV or a constant

The sequence {Xn} converges to X in probability if

∀ δ > 0, P{|Xn − X| > δ} → 0 as n→ ∞

We write Xn
p→ X

Example. If Xn ∼ N(α, 1/n), then Xn
p→ α
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We can see this visually
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Figure : P{|Xn − α| > δ} → 0
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Let’s also check it formally, using this well known fact

Fact. If Y is any nonnegative random variable and θ > 0, then

P{Y ≥ θ} ≤ E [Y]
θ

Proof: We have

Y ≥ Y1{Y ≥ θ} ≥ θ1{Y ≥ θ}

Hence, by monotonicity and linearity of E ,

E [Y] ≥ E [θ1{Y ≥ θ}] = θE [1{Y ≥ θ}] = θP{Y ≥ θ}
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Now let Xn ∼ N(α, 1/n) as before, fix δ > 0

Observe that

{|Xn − α| > δ} = {(Xn − α)2 > δ2}

As a result, we have

P{|Xn − α| > δ} = P{(Xn − α)2 > δ2}

≤ E [(Xn − α)2]

δ2

=
1

nδ2

→ 0
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Sample Averages

It’s often said that diversified portfolios are “less risky”

For example, let

• Xn be the payoff from holding asset n
• E [Xn] = µ

• var[Xn] = σ2

• cov[Xj, Xk] = 0 when j 6= k

If we hold just X1 expected payoff is µ and variance is σ2

If hold Y = X1/2 + X2/2 then mean is still µ but variance is

var[Y] = var [X1/2 + X2/2] =
σ2

4
+

σ2

4
=

σ2

2
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More generally, if X̄N := 1
N ∑N

n=1 Xn then

E [X̄N ] = E

[
1
N

N

∑
n=1

Xn

]
=

1
N

N

∑
n=1

E [Xn] = µ

but

E [(X̄N − µ)2] = E


[

1
N

N

∑
i=1

(Xi − µ)

]2


=
1

N2

N

∑
i=1

N

∑
j=1
E (Xi − µ)(Xj − µ)

=
1

N2

N

∑
i=1
E (Xi − µ)2 =

σ2

N
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Hence for this portfolio

1. the mean stays the same

2. variance of the portfolio goes to zero with N

Note the key step

1
n2

n

∑
i=1

n

∑
j=1
E (Xi − µ)(Xj − µ) =

1
n2

n

∑
i=1
E (Xi − µ)2

depends crucially on lack of correlation

If correlation is present the same argument doesn’t work

Example. The subprime crisis
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Law of Large Numbers

The next fact is called the (weak) law of large numbers (LLN)

Fact. Let {Xn} iid∼ F. If∫ ∞

−∞
|x|F(dx) < ∞

then
1
N

N

∑
n=1

Xn
p→ µ as N → ∞

where

µ := E [Xn] =
∫ ∞

−∞
xF(dx)
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X̄N for Xn ∼ student’s t with 10 degrees of freedom µ

Figure : Example. Student t distributed RVs
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X̄N for Xn ∼ poisson(4) µ

Figure : Example. Poisson distributed RVs
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X̄N for Xn ∼ beta(2, 2) µ

Figure : Example. Beta distributed RVs
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Proof of the LLN for the case var[Xn] = σ2 < ∞

We saw before that

E [(X̄N − µ)2] =
σ2

N

and

P{(X̄N − µ)2 > δ2} ≤ E [(X̄N − µ)2]

δ2

Therefore

P{|X̄N − µ| > δ} = P{(X̄N − µ)2 > δ2} ≤ σ2

Nδ2

∴ P{|X̄N − µ| > δ} → 0 as N → ∞
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The LLN is more general than it looks

Fact. If {Xn} iid∼ F and

h : R→ R with
∫
|h(x)|F(dx) < ∞

then
1
N

N

∑
n=1

h(Xn)
p→
∫

h(x)F(dx)

Proof: Apply LLN to Yn := h(Xn)

Example. Set h(x) = x2 to get

1
N

N

∑
n=1

X2
n

p→
∫

x2F(dx) as N → ∞
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Example. I have a model that tells me the distribution of
household wealth in 5 years will be equal to the distribution of

Y = log(cos(X + 1)2 + exp(X)1/2 + 5)

where
X ∼ N(0, 1)

Since Y is a well defined RV it has a cdf

G(y) := P{Y ≤ y}

I want to know E [Y] =
∫

yG(dy) but how to calculate it?

Easiest way is simulation
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In [1]: import numpy as np

In [2]: X = np.random.randn(1e6) # 10^6 N(0,1) draws

In [3]: temp = np.cos(X+1)**2 + np.sqrt(np.exp(X))

In [4]: Y = np.log(temp + 5)

In [5]: np.mean(Y)

Out[5]: 1.8837663629867571

This is a sample mean of 106 draws Yn

The sample mean is close to the true mean by the LLN

Use same idea to get variance, standard deviation, median, etc.
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LLN applies to probabilities as well

Example. Given any x ∈ R,

1
N

N

∑
n=1

1{Xn ≤ x} p→ F(x)

Proof: Let h(s) := 1{s ≤ x}
We then have

E [h(Xn)] = E [1{Xn ≤ x}] = P{Xn ≤ x} = F(x)

Hence, by the previous fact,

1
N

N

∑
n=1

1{Xn ≤ x} = 1
N

N

∑
n=1

h(Xn)
p→ E [h(Xn)] = F(x)
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Failure of the LLN

We discussed how the LLN can fail when there’s correlation

In fact the LLN can still work if correlations die out sufficiently
quickly

• e.g., cov[Xj, Xj+k]→ 0 quickly as k→ ∞

The other important assumption is∫ ∞

−∞
|x|F(dx) < ∞

Conversely, with very heavy tailed distributions the LLN can fail

• Individual extreme observations dominate the average
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Example. Recall the Cauchy distribution

F(x) = arctan(x)/π + 1/2 and p(x) =
1

π(1 + x2)

In this case it’s known that∫ ∞

−∞
|x|F(dx) :=

∫ ∞

−∞
|x|p(x)dx = ∞

In fact for Cauchy samples the LLN always fails

(Proof omitted)
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