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Analysis on the Line

Recall that R denotes the continuous real line

0−1 3/2 e

Can be thought of as Q∪ I where

• Q is the rational numbers

• I is the irrational numbers
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Facts

• Between any two real numbers a < b there exists a rational
number

• Between any two real numbers a < b there exists an irrational
number

Thus, the rationals and irrationals are “all mixed together”



4/43

Real Numbers Neighborhoods Sequences Properties of Limits Infinite Sums Cauchy Sequences

If x ∈ R then |x| := max{x,−x} called its absolute value
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Fact. For any x, y ∈ R, the following statements hold

1. |x| ≤ y if and only if −y ≤ x ≤ y
2. |x| < y if and only if −y < x < y
3. |x| = 0 if and only if x = 0
4. |xy| = |x||y|
5. |x + y| ≤ |x|+ |y|

Last inequality is called the triangle inequality

Ex. Using these rules, show that if x, y, z ∈ R, then

1. |x − y| ≤ |x|+ |y|
2. |x − y| ≤ |x − z|+ |z − y| (Hint: x − y = x − z + z − y)
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Bounded sets

A ⊂ R is called bounded if ∃ M ∈ R s.t. |x| ≤ M, all x ∈ A

A

M−M 0
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Example. Every finite subset A of R is bounded

∵ Set M := max{|a| : a ∈ A}

Example. N is unbounded

∵ For any M ∈ R there is an n that exceeds it

Example. (a, b) is bounded for any a, b

∵ Each x ∈ (a, b) satisfies |x| ≤ M := max{|a|, |b|}

Ex. Check it
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Fact. If A and B are bounded sets then so is A ∪ B

Proof: Let A and B be bounded sets and let C := A ∪ B

By definition, ∃ MA and MB with

|a| ≤ MA, all a ∈ A, |b| ≤ MB, all b ∈ B

Let MC := max{MA, MB} and fix any x ∈ C

x ∈ C =⇒ x ∈ A or x ∈ B

∴ |x| ≤ MA or |x| ≤ MB

∴ |x| ≤ MC
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ε-balls

Given ε > 0 and a ∈ R, the ε-ball around a is

Bε(a) := {x ∈ R : |a − x| < ε}

Equivalently,

Bε(a) = {x ∈ R : a − ε < x < a + ε}

a a + εa − ε
( )

Ex. Check equivalence



10/43

Real Numbers Neighborhoods Sequences Properties of Limits Infinite Sums Cauchy Sequences

Fact. If x is in every ε-ball around a then x = a

Proof:

Suppose to the contrary that

• x is in every ε-ball around a and yet x 6= a

Since x is not a we must have |x − a| > 0

Set ε := |x − a|

Since ε > 0, we have x ∈ Bε(a)

This means that |x − a| < ε

That is, |x − a| < |x − a| — contradiction
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Fact. If a 6= b, then ∃ ε > 0 s.t. Bε(a) and Bε(b) are disjoint

(

Bε(b)Bε(a)

) ( )

Proof: Let a, b ∈ R with a 6= b

If we set ε := |a − b|/2, then Bε(a) and Bε(b) are disjoint

To see this, suppose to the contrary that ∃ x ∈ Bε(a) ∩ Bε(B)

Then |x − a| < |a − b|/2 and |x − b| < |a − b|/2

But then

|a − b| ≤ |a − x|+ |x − b| < |a − b|/2 + |a − b|/2 = |a − b|

Contradiction
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Sequences

A sequence is a function from N to R

• to each n ∈ N we associate one xn ∈ R

Typically written as {xn}∞
n=1 or {xn} or {x1, x2, x3, . . .}

Examples.

• {xn} = {2, 4, 6, . . .}

• {xn} = {1, 1/2, 1/4, . . .}

• {xn} = {1,−1, 1,−1, . . .}

• {xn} = {0, 0, 0, . . .}
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Sequence {xn} is called

• bounded if {x1, x2, . . .} is a bounded set

• monotone increasing if xn+1 ≥ xn for all n

• monotone decreasing if xn+1 ≤ xn for all n

• monotone if it is either monotone increasing or monotone
decreasing

Examples.

• xn = 1/n is monotone decreasing, bounded

• xn = (−1)n is not monotone but is bounded

• xn = 2n is monotone increasing but not bounded
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Convergence

Let a ∈ R and let {xn} be a sequence

Suppose, for any ε > 0, we can find an N ∈ N with

xn ∈ Bε(a) for all n ≥ N

Then {xn} is said to converge to a

Convergence to a in symbols,

∀ ε > 0, ∃ N ∈ N s.t. n ≥ N =⇒ xn ∈ Bε(a)

“{xn} is eventually in any ε-ball around a”
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The sequence {xn} is eventually in this ε-ball around a

N

a− ε

a

a + ε

xn

a
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...and this one

N

a− ε

a

a + ε

xn

a
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...and this one

N

a− ε

a

a + ε

xn

a
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...and this one

N

a− ε
a

a + ε

xn

a
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The point a is called the limit of the sequence, and we write

xn → a as n → ∞

or
lim
n→∞

xn = a

We call {xn} convergent if it converges to some limit in R
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Example. {xn} defined by xn = 1 + 1/n converges to 1

To prove this must show that ∀ ε > 0, there is an N ∈ N such that

n ≥ N =⇒ |xn − 1| < ε (?)

To show this formally we need to come up with an “algorithm”

1. You give me any ε > 0
2. I respond with an N such that (?) holds

In general, as ε shrinks, N will have to grow
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Here’s how to do this for the case 1 + 1/n converges to 1

First pick an arbitrary ε > 0

Now we have to come up with an N such that

n ≥ N =⇒ |1 + 1/n − 1| < ε (?)

Let N be the first integer greater than 1/ε

Then

n ≥ N =⇒ n > 1/ε =⇒ 1/n < ε =⇒ |1 + 1/n − 1| < ε

Remark: Any N′ > N would also work
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Example. The sequence xn = 2−n converges to 0

Proof: Must show that, ∀ ε > 0, ∃ N ∈ N such that

n ≥ N =⇒ |2−n − 0| < ε (?)

So pick any ε > 0, and observe that

|2−n − 0| < ε ⇐⇒ 2−n < ε ⇐⇒ n > − ln ε

ln 2

Hence we take N to be the first integer greater than − ln ε/ ln 2

Then

n ≥ N =⇒ n > − ln ε

ln 2
=⇒ (?)
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What if we want to show that xn → a fails?

To show convergence fails we need to show the negation of

∀ ε > 0, ∃ N ∈ N s.t. n ≥ N =⇒ xn ∈ Bε(a)

Negation: there is an ε > 0 where we can’t find any such N

More specifically, ∃ ε > 0 such that, which ever N ∈ N we look at,
there’s an n ≥ N with xn outside Bε(a)

One way to say this: There exists a Bε(a) such that xn /∈ Bε(a)
infinitely often
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This is the kind of picture we’re thinking of

a− ε

a

a + ε

xn

a
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Example. The sequence xn = (−1)n does not converge to 1

Proof: This is what we want to show

∃ ε > 0 s.t. s.t. xn /∈ Bε(1) infinitely often

Since it’s a “there exists”, we need to come up with such an ε

Let’s try ε = 0.5, so that

Bε(1) = {x ∈ R : |x − 1| < 0.5} = (0.5, 1.5)

If n is odd then xn = −1, which is not in (0.5, 1.5)

Hence {xn} not in Bε(1) infinitely often
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An Equivalence

Let {xn} be a sequence in R and let a ∈ R

Fact. xn → a if and only if |xn − a| → 0

Proof: Compare the definitions:

• xn → a ⇐⇒ ∀ ε > 0, ∃ N ∈ N s.t. |xn − a| < ε

• |xn − a| → 0 ⇐⇒ ∀ ε > 0, ∃ N ∈ N s.t. ||xn − a| − 0| < ε

Clearly these statements are equivalent
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Fact. Each sequence in R has at most one limit

Proof: Suppose instead that xn → a and xn → b with a 6= b

Take disjoint ε-balls around a and b

(

Bε(b)Bε(a)

) ( )

Since xn → a and xn → b,

• ∃ Na s.t. n ≥ Na =⇒ xn ∈ Bε(a)
• ∃ Nb s.t. n ≥ Nb =⇒ xn ∈ Bε(b)

But then n ≥ max{Na, Nb} =⇒ xn ∈ Bε(a) and xn ∈ Bε(b)

Contradiction of disjoint
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Fact. Every convergent sequence is bounded

Proof: Let {xn} be convergent with xn → a

Fix any ε > 0 and choose N s.t. xn ∈ Bε(a) when n ≥ N

Regarded as sets,

{xn} ⊂ {x1, . . . , xN−1} ∪ Bε(a)

Both of these sets are bounded

• First because finite sets are bounded

• Second because Bε(a) is bounded

Moreover, finite unions of bounded sets are bounded
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Limits vs Algebra

Here are some basic tools for working with limits

Facts If xn → x and yn → y, then

1. xn + yn → x + y

2. xnyn → xy

3. xn/yn → x/y when yn and y are 6= 0

4. xn ≤ yn for all n =⇒ x ≤ y
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Let’s check that xn → x and yn → y implies xn + yn → x + y

Proof: Fix ε > 0

Need to find N ∈ N such that

n ≥ N =⇒ |(xn + yn)− (x + y)| < ε (?)

Note that

• |(xn + yn)− (x + y)| ≤ |xn − x|+ |yn − y|

• ∃Nx ∈ N such that n ≥ Nx =⇒ |xn − x| < ε/2

• ∃Ny ∈ N such that n ≥ Ny =⇒ |yn − y| < ε/2

Ex. Show N := max{Nx, Ny} satisfies (?)
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Let’s also check the claim that xn → x, yn → y and xn ≤ yn for
all n ∈ N implies x ≤ y

Proof: Suppose instead that x > y

Take disjoint ε-balls Bε(x) and Bε(y) around these points

( ) ( )

Bε(y) Bε(x)

Exists an n such that xn ∈ Bε(x) and yn ∈ Bε(y)

But then xn > yn, a contradiction

In words: “Weak inequalities are preserved under limits”
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Here’s another property of limits, called the “squeeze theorem”

Fact. Let {xn} {yn} and {zn} be sequences in R. If

1. xn ≤ yn ≤ zn for all n ∈ N
2. xn → a and zn → a

then yn → a also holds

Proof: Pick any ε > 0

We can choose an

• Nx ∈ N such that n ≥ Nx =⇒ xn ∈ Bε(a)
• Nz ∈ N such that n ≥ Nz =⇒ zn ∈ Bε(a)

Ex. Show that n ≥ max{Nx, Nz} =⇒ yn ∈ Bε(a)
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Infinite Sums

Let {xn} be a sequence in R

Then
∞

∑
n=1

xn := lim
k→∞

k

∑
n=1

xn

Thus, ∑∞
n=1 xn is defined, if it exists, as the limit of {yk} where

yk :=
k

∑
n=1

xn

Other notation:

∑
n

xn, ∑
n≥1

xn, ∑
n∈N

xn, etc.
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Example. If xn = αn for α ∈ (0, 1), then

∞

∑
n=1

xn = lim
k→∞

k

∑
n=1

αn = lim
k→∞

α
1 − αk

1 − α
=

α

1 − α

Example. If xn = (−1)n the limit fails to exist because

yk =
k

∑
n=1

xn =

{
0 if k is even

−1 otherwise
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Fact. If {xn} is nonnegative and ∑n xn < ∞, then xn → 0

Proof: Suppose to the contrary that xn → 0 fails

Then

∃ ε > 0 such that xn /∈ Bε(0) infinitely often

Since xn is nonnegative,

∃ ε > 0 such that xn exceeds ε infinitely often

But then ∑n xn cannot be finite — contradiction
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Cauchy Sequences

Informal def: Cauchy sequences are those where |xn − xn+1| gets
smaller and smaller

︸︷︷︸
|xn − xn+1|

Example. Sequences generated by iterative methods for solving
nonlinear equations often have this property

Cauchy sequences “look like” they are converging to something

A key axiom of analysis is that such sequences do converge to
something — details follow
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A sequence {xn} is called Cauchy if ∀ ε > 0, ∃ N ∈ N such that

n ≥ N and j ≥ 1 =⇒ |xn − xn+j| < ε (?)

Example. {xn} defined by xn = αn where α ∈ (0, 1) is Cauchy

Proof: For any n, j we have

|xn − xn+j| = |αn − αn+j| = αn|1 − αj| ≤ αn

Fix ε > 0

Ex. Show that n > log(ε)/ log(α) =⇒ αn < ε

Hence any integer N > log(ε)/ log(α) makes (?) hold
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Fact. For any sequence, convergent ⇐⇒ Cauchy

Proof of =⇒ :

Let {xn} be a sequence converging to some a ∈ R

Fix ε > 0

We can choose N s.t.

n ≥ N =⇒ |xn − a| < ε

2

For this N we have n ≥ N and j ≥ 1 implies

|xn − xn+j| ≤ |xn − a|+ |xn+j − a| < ε

2
+

ε

2
= ε
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Proof of ⇐=:

This is basically an axiom in the definition of R

Either

1. We assume it, or

2. We assume something else that’s essentially equivalent

We’ll go for option 1

Implications:

• There are no “gaps” in the real line

• To check {xn} converges to something we just need to check
Cauchy property
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Fact. Every bounded monotone sequence in R is convergent

Sketch of proof:

Suffices to show that {xn} is Cauchy

Suppose not

Then no matter how far we go down the sequence we can find
another jump of size ε > 0

Since monotone, all the jumps are in the same direction

But then {xn} not bounded — a contradiction

Full proof: See any text on analysis
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Subsequences

A sequence {xnk} is called a subsequence of {xn} if

1. {xnk} is a subset of {xn}

2. the indices nk are strictly increasing

Example.
{xn} = {x1, x2, x3, x4, x5, . . .}

and
{xnk} = {x2, x4, x6, x8 . . .}

In this case

{nk} = {n1, n2, n3, . . .} = {2, 4, 6, . . .}
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More Examples.

1. { 1
1 , 1

3 , 1
5 , . . .} is a subsequence of { 1

1 , 1
2 , 1

3 , . . .}

2. { 1
1 , 1

2 , 1
3 , . . .} is a subsequence of { 1

1 , 1
2 , 1

3 , . . .}

3. { 1
2 , 1

2 , 1
2 , . . .} is not a subsequence of { 1

1 , 1
2 , 1

3 , . . .}

Fact. Every sequence has a monotone subsequence

Proof: Omitted

Example. The sequence xn = (−1)n has monotone subsequence

{x2, x4, x6, . . .} = {1, 1, 1, . . .}



43/43

Real Numbers Neighborhoods Sequences Properties of Limits Infinite Sums Cauchy Sequences

This leads us to the famous Bolzano–Weierstrass theorem, to
be used later when we discuss optimization

Fact. Every bounded sequence in R has a convergent subsequence

Proof: Let {xn} be a bounded sequence

There exists a monotone subsequence

• which is itself a bounded sequence (why?)

• and hence both monotone and bounded

Every bounded monotone sequence converges

Hence {xn} has a convergent subsequence
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