Real Numbers

Neighborhoods

Sequences

Properties of Limits

Infinite Sur

<ロト < 母 > < 喜 > < 喜 > 言 の へ つ 1/43

Cauchy Sequences

ECON2125/4021/8013

Lecture 16

John Stachurski

Semester 1, 2015

<ロト < 母 > < 臣 > < 臣 > 臣 の < C 2/43

Analysis on the Line

Recall that $\ensuremath{\mathbb{R}}$ denotes the continuous real line

Can be thought of as $\mathbb{Q} \cup \mathbb{I}$ where

- \mathbb{Q} is the rational numbers
- I is the irrational numbers

Real Numbers	Neighborhoods	Sequences	Properties of Limits	Infinite Sums	Cauchy Sequences

Facts

- Between any two real numbers *a* < *b* there exists a rational number
- Between any two real numbers a < b there exists an irrational number

<ロト < 母 > < 三 > < 三 > 三 の Q @ 3/43

Thus, the rationals and irrationals are "all mixed together"

Real Numbers

If $x \in \mathbb{R}$ then $|x| := \max\{x, -x\}$ called its absolute value

<ロト < 母 ト < 臣 ト < 臣 ト 王 の Q @ 4/43

Sequences

Fact. For any $x, y \in \mathbb{R}$, the following statements hold

1.
$$|x| \le y$$
 if and only if $-y \le x \le y$
2. $|x| < y$ if and only if $-y < x < y$
3. $|x| = 0$ if and only if $x = 0$
4. $|xy| = |x||y|$
5. $|x+y| \le |x|+|y|$

Last inequality is called the triangle inequality

Ex. Using these rules, show that if $x, y, z \in \mathbb{R}$, then

1.
$$|x - y| \le |x| + |y|$$

2. $|x - y| \le |x - z| + |z - y|$ (Hint: $x - y = x - z + z - y$)

$A \subset \mathbb{R}$ is called **bounded** if $\exists M \in \mathbb{R}$ s.t. $|x| \leq M$, all $x \in A$

<ロト < 団 > < 臣 > < 臣 > 王 の へ で 6/43

Example. Every finite subset A of \mathbb{R} is bounded

 \therefore Set $M := \max\{|a| : a \in A\}$

Example. \mathbb{N} is unbounded

 \because For any $M \in \mathbb{R}$ there is an n that exceeds it

Example. (a, b) is bounded for any a, b

 \therefore Each $x \in (a, b)$ satisfies $|x| \le M := \max\{|a|, |b|\}$

Ex. Check it

<ロト < 母 ト < 臣 ト < 臣 ト 王 の < で 7/43

Fact. If A and B are bounded sets then so is $A \cup B$

Proof: Let A and B be bounded sets and let $C := A \cup B$ By definition, $\exists M_A$ and M_B with

 $|a| \leq M_A$, all $a \in A$, $|b| \leq M_B$, all $b \in B$

Let $M_C := \max\{M_A, M_B\}$ and fix any $x \in C$

 $x \in C \implies x \in A \text{ or } x \in B$

 $\therefore |x| \le M_A$ or $|x| \le M_B$ $\therefore |x| \le M_C$

<ロト<日本

ϵ -balls

Given $\epsilon > 0$ and $a \in \mathbb{R}$, the ϵ -ball around a is

$$B_{\epsilon}(a) := \{ x \in \mathbb{R} : |a - x| < \epsilon \}$$

Equivalently,

$$B_{\epsilon}(a) = \{ x \in \mathbb{R} : a - \epsilon < x < a + \epsilon \}$$

Ex. Check equivalence

<ロト < 母 > < 臣 > < 臣 > 三 · の Q (g/43

Fact. If x is in every ϵ -ball around a then x = a

Proof:

Suppose to the contrary that

• x is in every ϵ -ball around a and yet $x \neq a$

Since x is not a we must have |x - a| > 0

Set $\epsilon := |x - a|$

Since $\epsilon > 0$, we have $x \in B_{\epsilon}(a)$

This means that $|x-a| < \epsilon$

That is, |x - a| < |x - a| — contradiction

(ロ)、(日)、(三)、(三)、(三)、(2)、(11/43)

Fact. If $a \neq b$, then $\exists \epsilon > 0$ s.t. $B_{\epsilon}(a)$ and $B_{\epsilon}(b)$ are disjoint

Proof: Let $a, b \in \mathbb{R}$ with $a \neq b$

If we set $\epsilon := |a - b|/2$, then $B_{\epsilon}(a)$ and $B_{\epsilon}(b)$ are disjoint

To see this, suppose to the contrary that $\exists x \in B_{\epsilon}(a) \cap B_{\epsilon}(B)$ Then |x-a| < |a-b|/2 and |x-b| < |a-b|/2But then

$$|a-b| \le |a-x| + |x-b| < |a-b|/2 + |a-b|/2 = |a-b|/2$$

Contradiction

<ロト < 目 > < 目 > < 目 > 目 の へ C 12/43

Sequences

A sequence is a function from ${\mathbb N}$ to ${\mathbb R}$

• to each $n \in \mathbb{N}$ we associate one $x_n \in \mathbb{R}$

Typically written as $\{x_n\}_{n=1}^{\infty}$ or $\{x_n\}$ or $\{x_1, x_2, x_3, \ldots\}$

Examples.

- $\{x_n\} = \{2, 4, 6, \ldots\}$
- $\{x_n\} = \{1, 1/2, 1/4, \ldots\}$
- $\{x_n\} = \{1, -1, 1, -1, \ldots\}$
- $\{x_n\} = \{0, 0, 0, \ldots\}$

Sequence $\{x_n\}$ is called

- **bounded** if {*x*₁, *x*₂, ...} is a bounded set
- monotone increasing if $x_{n+1} \ge x_n$ for all n
- monotone decreasing if $x_{n+1} \le x_n$ for all n
- monotone if it is either monotone increasing or monotone decreasing

Examples.

- $x_n = 1/n$ is monotone decreasing, bounded
- $x_n = (-1)^n$ is not monotone but is bounded
- $x_n = 2n$ is monotone increasing but not bounded

Convergence

Let $a \in \mathbb{R}$ and let $\{x_n\}$ be a sequence

Suppose, for any $\epsilon > 0$, we can find an $N \in \mathbb{N}$ with

 $x_n \in B_{\epsilon}(a)$ for all $n \ge N$

Then $\{x_n\}$ is said to **converge** to *a*

Convergence to a in symbols,

 $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } n \geq \mathbb{N} \implies x_n \in B_{\epsilon}(a)$

" $\{x_n\}$ is eventually in any ϵ -ball around a"

The sequence $\{x_n\}$ is eventually in this ϵ -ball around a

<ロト < 部ト < Eト < Eト E の へ C 15/43

<ロト < 合ト < 言ト < 言ト = うへで 16/43

<ロト (日) (日) (王) (王) (王) (17/43)

<ロト < 合ト < 言ト < 言ト = うへで 18/43

The point a is called the **limit** of the sequence, and we write

 $x_n
ightarrow a$ as $n
ightarrow \infty$

or

$$\lim_{n\to\infty}x_n=a$$

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の Q C 19/43

We call $\{x_n\}$ convergent if it converges to some limit in \mathbb{R}

Example. $\{x_n\}$ defined by $x_n = 1 + 1/n$ converges to 1

To prove this must show that $\forall \epsilon > 0$, there is an $N \in \mathbb{N}$ such that

$$n \ge N \implies |x_n - 1| < \epsilon$$
 (*)

To show this formally we need to come up with an "algorithm"

- 1. You give me any $\epsilon > 0$
- 2. I respond with an N such that (\star) holds

In general, as ϵ shrinks, N will have to grow

<ロト < 母 ト < 王 ト < 王 ト 三 の へ C 20/43

Here's how to do this for the case 1+1/n converges to 1 First pick an arbitrary $\epsilon>0$

Now we have to come up with an N such that

$$n \ge N \implies |1+1/n-1| < \epsilon$$
 (*)

Let N be the first integer greater than $1/\epsilon$

Then

$$n \ge N \implies n > 1/\epsilon \implies 1/n < \epsilon \implies |1+1/n-1| < \epsilon$$

Remark: Any N' > N would also work

<ロト < 団 ト < 三 ト < 三 ト 三 の へ C 21/43

Sequences

<ロト < 団ト < 三ト < 三ト 三 のへで 22/43

Example. The sequence $x_n = 2^{-n}$ converges to 0

Proof: Must show that, $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that

$$n \ge N \implies |2^{-n} - 0| < \epsilon$$
 (*)

So pick any $\epsilon > 0$, and observe that

$$|2^{-n} - 0| < \epsilon \iff 2^{-n} < \epsilon \iff n > -\frac{\ln \epsilon}{\ln 2}$$

Hence we take N to be the first integer greater than $-\ln \varepsilon / \ln 2$ Then

$$n \ge N \implies n > -\frac{\ln \epsilon}{\ln 2} \implies (\star)$$

What if we want to show that $x_n \rightarrow a$ fails?

To show convergence fails we need to show the negation of

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } n \ge N \implies x_n \in B_{\epsilon}(a)$$

Negation: there is an $\epsilon > 0$ where we can't find any such N

More specifically, $\exists \epsilon > 0$ such that, which ever $N \in \mathbb{N}$ we look at, there's an $n \ge N$ with x_n outside $B_{\epsilon}(a)$

One way to say this: There exists a $B_{\epsilon}(a)$ such that $x_n \notin B_{\epsilon}(a)$ infinitely often

This is the kind of picture we're thinking of

<ロト < 部ト < Eト < Eト E の Q C 24/43

Example. The sequence $x_n = (-1)^n$ does <u>not</u> converge to 1

Proof: This is what we want to show

 $\exists \epsilon > 0$ s.t. s.t. $x_n \notin B_{\epsilon}(1)$ infinitely often

Since it's a "there exists", we need to come up with such an ϵ Let's try $\epsilon=0.5,$ so that

$$B_{\epsilon}(1) = \{x \in \mathbb{R} : |x - 1| < 0.5\} = (0.5, 1.5)$$

If *n* is odd then $x_n = -1$, which is not in (0.5, 1.5) Hence $\{x_n\}$ not in $B_{\epsilon}(1)$ infinitely often

(ロ)、(日)、(三)、(三)、(三)、(25/43)

Let $\{x_n\}$ be a sequence in \mathbb{R} and let $a \in \mathbb{R}$

Fact. $x_n \to a$ if and only if $|x_n - a| \to 0$

Proof: Compare the definitions:

•
$$x_n \to a \iff \forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } |x_n - a| < \epsilon$$

•
$$|x_n - a| \to 0 \iff \forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } ||x_n - a| - 0| < \epsilon$$

<ロト < 母 ト < 三 ト < 三 ト 三 の へ C 26/43

Clearly these statements are equivalent

Fact. Each sequence in \mathbb{R} has at most one limit

Proof: Suppose instead that $x_n \to a$ and $x_n \to b$ with $a \neq b$ Take disjoint ϵ -balls around a and b

Since $x_n \to a$ and $x_n \to b$,

• $\exists N_a \text{ s.t. } n \ge N_a \implies x_n \in B_{\epsilon}(a)$ • $\exists N_h \text{ s.t. } n > N_h \implies x_n \in B_{\epsilon}(b)$

But then $n \ge \max\{N_a, N_b\} \implies x_n \in B_{\epsilon}(a)$ and $x_n \in B_{\epsilon}(b)$ Contradiction of disjoint

Fact. Every convergent sequence is bounded

Proof: Let $\{x_n\}$ be convergent with $x_n \to a$ Fix any $\epsilon > 0$ and choose N s.t. $x_n \in B_{\epsilon}(a)$ when $n \ge N$ Regarded as sets,

$$\{x_n\} \subset \{x_1,\ldots,x_{N-1}\} \cup B_{\epsilon}(a)$$

Both of these sets are bounded

- First because finite sets are bounded
- Second because $B_{\epsilon}(a)$ is bounded

Moreover, finite unions of bounded sets are bounded

<ロト < 母 ト < 王 ト < 王 ト 三 の へ C 29/43

Cauchy Sequences

Limits vs Algebra

Here are some basic tools for working with limits

Facts If $x_n \rightarrow x$ and $y_n \rightarrow y$, then

- 1. $x_n + y_n \rightarrow x + y$
- 2. $x_n y_n \rightarrow xy$
- 3. $x_n/y_n \rightarrow x/y$ when y_n and y are $\neq 0$

4. $x_n \leq y_n$ for all $n \implies x \leq y$

Let's check that $x_n \to x$ and $y_n \to y$ implies $x_n + y_n \to x + y$

Proof: Fix $\epsilon > 0$

Need to find $N \in \mathbb{N}$ such that

$$n \ge N \implies |(x_n + y_n) - (x + y)| < \epsilon$$
 (*)

Note that

•
$$|(x_n + y_n) - (x + y)| \le |x_n - x| + |y_n - y|$$

•
$$\exists N_x \in \mathbb{N}$$
 such that $n \geq N_x \implies |x_n - x| < \epsilon/2$

•
$$\exists N_y \in \mathbb{N}$$
 such that $n \geq N_y \implies |y_n - y| < \epsilon/2$

Ex. Show $N := \max\{N_x, N_y\}$ satisfies (*)

<ロト < 目 > < 目 > < 目 > 目 の へ C 31/43

Let's also check the claim that $x_n \to x$, $y_n \to y$ and $x_n \le y_n$ for all $n \in \mathbb{N}$ implies $x \le y$

Proof: Suppose instead that x > y

Take disjoint ϵ -balls $B_{\epsilon}(x)$ and $B_{\epsilon}(y)$ around these points

Exists an n such that $x_n \in B_{\epsilon}(x)$ and $y_n \in B_{\epsilon}(y)$

But then $x_n > y_n$, a contradiction

In words: "Weak inequalities are preserved under limits"

Sequences

Here's another property of limits, called the "squeeze theorem" **Fact.** Let $\{x_n\}$ $\{y_n\}$ and $\{z_n\}$ be sequences in \mathbb{R} . If

1.
$$x_n \leq y_n \leq z_n$$
 for all $n \in \mathbb{N}$

2.
$$x_n \rightarrow a$$
 and $z_n \rightarrow a$

then $y_n \rightarrow a$ also holds

Proof: Pick any $\epsilon > 0$

We can choose an

- $N_x \in \mathbb{N}$ such that $n \geq N_x \implies x_n \in B_{\epsilon}(a)$
- $N_z \in \mathbb{N}$ such that $n \ge N_z \implies z_n \in B_{\epsilon}(a)$

Ex. Show that $n \ge \max\{N_x, N_z\} \implies y_n \in B_{\epsilon}(a)$

Cauchy Sequences

Infinite Sums

Let $\{x_n\}$ be a sequence in \mathbb{R}

Then

$$\sum_{n=1}^{\infty} x_n := \lim_{k \to \infty} \sum_{n=1}^{k} x_n$$

Thus, $\sum_{n=1}^{\infty} x_n$ is defined, if it exists, as the limit of $\{y_k\}$ where

$$y_k := \sum_{n=1}^k x_n$$

Other notation:

$$\sum_n x_n$$
, $\sum_{n\geq 1} x_n$, $\sum_{n\in\mathbb{N}} x_n$, etc.

<ロト < 母 ト < 主 ト < 主 ト ラ マ へ 33/43

Example. If $x_n = \alpha^n$ for $\alpha \in (0, 1)$, then

$$\sum_{n=1}^{\infty} x_n = \lim_{k \to \infty} \sum_{n=1}^{k} \alpha^n = \lim_{k \to \infty} \alpha \frac{1 - \alpha^k}{1 - \alpha} = \frac{\alpha}{1 - \alpha}$$

Example. If $x_n = (-1)^n$ the limit fails to exist because

$$y_k = \sum_{n=1}^k x_n = \begin{cases} 0 & \text{if } k \text{ is even} \\ -1 & \text{otherwise} \end{cases}$$

<ロト < 部 ト < E ト < E ト ラ へ C 34/43

Fact. If $\{x_n\}$ is nonnegative and $\sum_n x_n < \infty$, then $x_n \to 0$

Proof: Suppose to the contrary that $x_n \to 0$ fails Then

$\exists \epsilon > 0$ such that $x_n \notin B_{\epsilon}(0)$ infinitely often

Since x_n is nonnegative,

 $\exists \epsilon > 0$ such that x_n exceeds ϵ infinitely often

But then $\sum_n x_n$ cannot be finite — contradiction

Informal def: Cauchy sequences are those where $|x_n - x_{n+1}|$ gets smaller and smaller

Example. Sequences generated by iterative methods for solving nonlinear equations often have this property

Cauchy sequences "look like" they are converging to something

A key \underline{axiom} of analysis is that such sequences do converge to something — details follow

・ロト <
一 ト <
三 ト <
三 ト <
三 ト <
、
三 ・ つ へ
で 37/43
</p>

A sequence $\{x_n\}$ is called **Cauchy** if $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ such that

$$n \ge N ext{ and } j \ge 1 \implies |x_n - x_{n+j}| < \epsilon$$
 (*)

Example. $\{x_n\}$ defined by $x_n = \alpha^n$ where $\alpha \in (0, 1)$ is Cauchy

Proof: For any n, j we have

$$|x_n - x_{n+j}| = |\alpha^n - \alpha^{n+j}| = \alpha^n |1 - \alpha^j| \le \alpha^n$$

Fix $\epsilon > 0$

Ex. Show that $n > \log(\epsilon) / \log(\alpha) \implies \alpha^n < \epsilon$

Hence any integer $N > \log(\epsilon) / \log(\alpha)$ makes (*) hold

Fact. For any sequence, convergent \iff Cauchy

Proof of \implies :

Let $\{x_n\}$ be a sequence converging to some $a \in \mathbb{R}$

Fix $\epsilon > 0$

We can choose N s.t.

$$n \ge N \implies |x_n - a| < \frac{\epsilon}{2}$$

For this N we have $n \ge N$ and $j \ge 1$ implies

$$|x_n - x_{n+j}| \le |x_n - a| + |x_{n+j} - a| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

<ロト < 母 ト < 三 ト < 三 ト 三 の へ C 38/43

Proof of \Leftarrow :

This is basically an \underline{axiom} in the definition of $\mathbb R$ Either

- 1. We assume it, or
- 2. We assume something else that's essentially equivalent

We'll go for option 1

Implications:

- There are no "gaps" in the real line
- To check {*x_n*} converges to something we just need to check Cauchy property

Fact. Every bounded monotone sequence in $\mathbb R$ is convergent

Sketch of proof:

Suffices to show that $\{x_n\}$ is Cauchy

Suppose not

Then no matter how far we go down the sequence we can find another jump of size $\varepsilon>0$

Since monotone, all the jumps are in the same direction

But then $\{x_n\}$ not bounded — a contradiction

Full proof: See any text on analysis

Subsequences

A sequence $\{x_{n_k}\}$ is called a **subsequence** of $\{x_n\}$ if

1. $\{x_{n_k}\}$ is a subset of $\{x_n\}$

2. the indices n_k are strictly increasing

Example.

$${x_n} = {x_1, x_2, x_3, x_4, x_5, \ldots}$$

and

$$\{x_{n_k}\} = \{x_2, x_4, x_6, x_8 \ldots\}$$

In this case

$${n_k} = {n_1, n_2, n_3, \ldots} = {2, 4, 6, \ldots}$$

<ロト < 母 ト < 三 ト < 三 ト 三 の へ C 41/43

More Examples.

1.
$$\{\frac{1}{1}, \frac{1}{3}, \frac{1}{5}, \ldots\}$$
 is a subsequence of $\{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \ldots\}$

2.
$$\{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \ldots\}$$
 is a subsequence of $\{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \ldots\}$

3.
$$\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \ldots\}$$
 is **not** a subsequence of $\{\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \ldots\}$

Fact. Every sequence has a monotone subsequence Proof: Omitted

Example. The sequence $x_n = (-1)^n$ has monotone subsequence

$$\{x_2, x_4, x_6, \ldots\} = \{1, 1, 1, \ldots\}$$

(ロ)、(部)、(E)、(E)、 E) の(で 42/43)

This leads us to the famous **Bolzano–Weierstrass theorem**, to be used later when we discuss optimization

Fact. Every bounded sequence in \mathbb{R} has a convergent subsequence

Proof: Let $\{x_n\}$ be a bounded sequence

There exists a monotone subsequence

- which is itself a bounded sequence (why?)
- and hence both monotone and bounded

Every bounded monotone sequence converges

Hence $\{x_n\}$ has a convergent subsequence