Analysis in \mathbb{R}^{K}

Open and Closed Sets

Continuity

<ロ > < 母 > < 喜 > < 喜 > 言 の Q で 1/50

Order

ECON2125/4021/8013

Lecture 17

John Stachurski

Semester 1, 2015

Announcements: Midterm

- Some students did very well
- But many competent students did not

As a result marks have been scaled upwards

- No mark has decreased from scaling
- An order preserving transformation
- Undergrad and graduates treated separately

The marks you receive (tomorrow?) will be the scaled marks

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の < で 3/50

Order

Announcements: Extra Reading

The current section of the course is on analysis

If you want supplementary reading try

- Simon and Blume, Mathematics for Economists, Ch. 12
- Sundaram, **A First Course in Optimization Theory**, Appendix B, C

Perhaps useful but not required reading

Let
$$f: (a, b) \to \mathbb{R}$$
 and let $x \in (a, b)$

Let H be all sequences $\{h_n\}$ such that $h_n \neq 0$ and $h_n \rightarrow 0$

If there exists a constant f'(x) such that

$$\frac{f(x+h_n)-f(x)}{h_n} \to f'(x)$$

for every $\{h_n\} \in H$, then

- *f* is said to be **differentiable** at *x*
- f'(x) is called the **derivative** of f at x

<ロト < 母 > < 臣 > < 臣 > 臣 の < で 5/50

Analysis in \mathbb{R}^{K}

Order

Example. Let $f \colon \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$

Fix any $x \in \mathbb{R}$ and any $h_n \to 0$

We have

$$\frac{f(x+h_n) - f(x)}{h_n} = \frac{(x+h_n)^2 - x^2}{h_n}$$
$$= \frac{x^2 + 2xh_n + h_n^2 - x^2}{h_n} = 2x + h_n$$

$$\therefore \quad f'(x) = \lim_{n \to \infty} (2x + h_n) = 2x$$

<ロト < 母 > < 言 > < 言 > 三 の へ で 6/50

Analysis in \mathbb{R}^K

Example. Let $f \colon \mathbb{R} \to \mathbb{R}$ be defined by f(x) = |x|

This function is not differentiable at x = 0

Indeed, if $h_n = 1/n$, then

$$\frac{f(0+h_n) - f(0)}{h_n} = \frac{|0+1/n| - |0|}{1/n} \to 1$$

On the other hand, if $h_n = -1/n$, then

$$\frac{f(0+h_n) - f(0)}{h_n} = \frac{|0 - 1/n| - |0|}{-1/n} \to -1$$

(ロ)、(型)、(E)、(E)、(E)、(E)、(C)、(7/50)

Analysis in \mathbb{R}^{K}

Just for intuition: Taylor series

Loosely speaking, if $f \colon \mathbb{R} \to \mathbb{R}$ is suitably differentiable at a, then

$$f(x) \approx f(a) + f'(a)(x-a)$$

for x very close to a,

$$f(x) \approx f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2$$

on a slightly wider interval, etc.

These are the 1st and 2nd order **Taylor series approximations** to f at a respectively

As the order goes higher we get better approximation

Orde

Figure : 4th order Taylor series for $f(x) = \frac{\sin(x)}{x}$ at 0

Analysis in \mathbb{R}^{K}

Open and Closed Sets

Orde

Figure : 6th order Taylor series for $f(x) = \frac{\sin(x)}{x}$ at 0

<ロト</th>
 ・< 目</th>
 ・< 目</th>
 の< 10/50</th>

Analysis in \mathbb{R}^{K}

Open and Closed Sets

Orde

Figure : 8th order Taylor series for $f(x) = \frac{\sin(x)}{x}$ at 0

<ロト < 母ト < 臣ト < 臣ト 王 のへで 11/50

Analysis in \mathbb{R}^{K}

Orde

Figure : 10th order Taylor series for $f(x) = \frac{\sin(x)}{x}$ at 0

<ロト < 昂ト < 喜ト < 喜ト 差 · うへで 12/50

Analysis in \mathbb{R}^{K}

Now we switch from studying points $x \in \mathbb{R}$ to vectors $\mathbf{x} \in \mathbb{R}^{K}$

• Replace distance |x - y| with $||\mathbf{x} - \mathbf{y}||$

Many of the same results go through otherwise unchanged

We state the analogous results briefly since

- You already have the intuition from ${\mathbb R}$
- Similar arguments, just replacing $|\cdot|$ with $\|\cdot\|$

We'll spend longer on things that are different

Bounded sets and ϵ -balls

A set $A \subset \mathbb{R}^K$ called **bounded** if

$$\exists M \in \mathbb{R} \text{ s.t. } \|\mathbf{x}\| \leq M, \quad \forall \mathbf{x} \in A$$

Remarks:

- A generalization of the scalar definition
- When K = 1, the norm $\|\cdot\|$ reduces to $|\cdot|$

Fact. If A and B are bounded sets then so is $C := A \cup B$

Proof: Same as the scalar case — just replace $|\cdot|$ with $||\cdot||$ **Ex.** Check it For $\epsilon > 0$, the ϵ -ball $B_{\epsilon}(\mathbf{a})$ around $\mathbf{a} \in \mathbb{R}^{K}$ is all $\mathbf{x} \in \mathbb{R}^{K}$ such that $\|\mathbf{a} - \mathbf{x}\| < \epsilon$

Fact. If **x** is in every ϵ -ball around **a** then **x** = **a**

Fact. If $\mathbf{a} \neq \mathbf{b}$, then $\exists \epsilon > 0$ s.t. $B_{\epsilon}(\mathbf{a}) \cap B_{\epsilon}(\mathbf{b}) = \emptyset$

A sequence $\{\mathbf{x}_n\}$ in \mathbb{R}^K is a function from \mathbb{N} to \mathbb{R}^K

Sequence $\{\mathbf{x}_n\}$ said to **converge** to $\mathbf{a} \in \mathbb{R}^K$ if

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } n \geq \mathbb{N} \implies \mathbf{x}_n \in B_{\epsilon}(\mathbf{a})$$

We say: " $\{\mathbf{x}_n\}$ eventually in any ϵ -neighborhood of **a**"

In this case **a** is called the **limit** of the sequence, and we write

$$\mathbf{x}_n o \mathbf{a}$$
 as $n o \infty$ or $\lim_{n o \infty} \mathbf{x}_n = \mathbf{a}$

We call $\{\mathbf{x}_n\}$ convergent if it converges to some limit in \mathbb{R}^K

<ロト < 昂ト < 喜ト < 喜ト 差 · うへで 17/50

<ロト < 昂ト < 喜ト < 喜ト 差 の < の 18/50

Vector vs Componentwise Convergence

Fact. A sequence $\{\mathbf{x}_n\}$ in \mathbb{R}^K converges to $\mathbf{a} \in \mathbb{R}^K$ if and only if each component sequence converges in \mathbb{R}

That is,

$$\begin{pmatrix} x_n^1 \\ \vdots \\ x_n^K \end{pmatrix} \to \begin{pmatrix} a^1 \\ \vdots \\ a^K \end{pmatrix} \quad \text{in } \mathbb{R}^K \quad \Longleftrightarrow \quad \begin{array}{c} x_n^1 \to a^1 & \text{ in } \mathbb{R} \\ \vdots & & \\ x_n^K \to a^K & \text{ in } \mathbb{R} \end{array}$$

Equivalent:

 $\mathbf{x}_n \to \mathbf{a} \text{ in } \mathbb{R}^K \iff \mathbf{e}'_k \mathbf{x}_n \to \mathbf{e}'_k \mathbf{a} \text{ in } \mathbb{R} \text{ for all } k$

<ロト < 母 ト < 王 ト < 王 ト 三 の < C 20/50

<ロト < 母 ト < 差 ト < 差 ト 差 の へ C 21/50

From Scalar to Vector Analysis

More definitions analogous to scalar case:

A sequence $\{\mathbf{x}_n\}$ is called **Cauchy** if

 $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } n, m \ge N \implies ||\mathbf{x}_n - \mathbf{x}_m|| < \epsilon$

A sequence $\{\mathbf{x}_{n_k}\}$ is called a subsequence of $\{\mathbf{x}_n\}$ if

- 1. $\{\mathbf{x}_{n_k}\}$ is a subset of $\{\mathbf{x}_n\}$
- 2. the indices n_k are strictly increasing

Analysis in \mathbb{R}^{K}

Facts Analogous to the scalar case,

- 1. $\mathbf{x}_n \to \mathbf{a}$ in \mathbb{R}^K if and only if $\|\mathbf{x}_n \mathbf{a}\| \to 0$ in \mathbb{R}
- 2. If $\mathbf{x}_n \to \mathbf{x}$ and $\mathbf{y}_n \to \mathbf{y}$ then $\mathbf{x}_n + \mathbf{y}_n \to \mathbf{x} + \mathbf{y}$
- 3. If $\mathbf{x}_n \to \mathbf{x}$ and $\alpha \in \mathbb{R}$ then $\alpha \mathbf{x}_n \to \alpha \mathbf{x}$
- 4. If $\mathbf{x}_n \to \mathbf{x}$ and $\mathbf{z} \in \mathbb{R}^K$ then $\mathbf{z}' \mathbf{x}_n \to \mathbf{z}' \mathbf{x}$
- 5. Each sequence in \mathbb{R}^{K} has at most one limit
- 6. Every convergent sequence in \mathbb{R}^{K} is bounded
- 7. Every convergent sequence in \mathbb{R}^K is Cauchy
- 8. Every Cauchy sequence in \mathbb{R}^{K} is convergent

Analysis in \mathbb{R}^{K}

Open and Closed Set

Continuit

Order

Ex. Adapt proofs given for the scalar case to these results

Example. Let's check that

$$\mathbf{x}_n o \mathbf{a} ext{ in } \mathbb{R}^K \iff \|\mathbf{x}_n - \mathbf{a}\| o 0 ext{ in } \mathbb{R}$$

• $\mathbf{x}_n \rightarrow \mathbf{a}$ in \mathbb{R}^K means that

 $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } n \geq \mathbb{N} \implies ||\mathbf{x}_n - \mathbf{a}|| < \epsilon$

•
$$\|\mathbf{x}_n - \mathbf{a}\| o 0$$
 in \mathbbm{R} means that

 $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } n \geq \mathbb{N} \implies |||\mathbf{x}_n - \mathbf{a}|| - 0| < \epsilon$

Obviously equivalent

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 つへで 24/50

Reminder — these Facts are more general than scalar ones

- True for any finite K
- So true for K = 1
- This recovers the corresponding scalar fact

You can forget the scalar fact if you remember the vector one

Infinite Sums in \mathbb{R}^{K}

Analogous to the scalar case, an infinite sum in \mathbb{R}^{K} is the limit of the partial sum:

• If $\{\mathbf{x}_n\}$ is a sequence in \mathbb{R}^K , then

$$\sum\limits_{n=1}^{\infty} \mathbf{x}_n := \lim\limits_{J o \infty} \sum\limits_{n=1}^{J} \mathbf{x}_n$$
 if the limit exists

In other words,

$$\mathbf{y} = \sum_{n=1}^{\infty} \mathbf{x}_n \quad \Longleftrightarrow \quad \lim_{J \to \infty} \left\| \sum_{n=1}^{J} \mathbf{x}_n - \mathbf{y} \right\| \to 0$$

<ロト < 母 ト < 王 ト < 王 ト 三 の < C 26/50

・ロト ・ (日) ・ (目) ・ (目) ・ 目 ・ (の) (27/50

Order

Open Sets

Let $G \subset \mathbb{R}^K$

We call $\mathbf{x} \in G$ interior to G if $\exists \epsilon > 0$ with $B_{\epsilon}(\mathbf{x}) \subset G$

Loosely speaking, interior means "not on the boundary"

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の へ C 28/50

Example. If G = (a, b) for some a < b, then any $x \in (a, b)$ is interior

Proof: Fix any a < b and any $x \in (a, b)$ Let $\epsilon := \min\{x - a, b - x\}$ If $y \in B_{\epsilon}(x)$ then y < b because $y = y + x - x \le |y - x| + x < \epsilon + x \le b - x + x = b$ Ex. Show $y \in B_{\epsilon}(x) \implies y > a$

<ロト < 母 ト < 王 ト < 王 ト 三 の へ C 29/50

Intuitively, any ϵ -ball centered on 1 will contain points > 1More formally, pick any $\epsilon > 0$ and consider $B_{\epsilon}(1)$ There exists a $y \in B_{\epsilon}(1)$ such that $y \notin [-1, 1]$ For example, consider the point $y := 1 + \epsilon/2$

Ex. Check this point

- lies in $B_{\epsilon}(1)$
- but not in [−1,1]

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の < © 30/50

A set $G \subset \mathbb{R}^K$ is called **open** if all of its points are interior

Example. Any "open" interval $(a, b) \subset \mathbb{R}$, since we showed all points are interior

Other Examples.

- any "open" ball $B_{\epsilon}(\mathbf{a}) = \{\mathbf{x} \in \mathbb{R}^{K} : \|\mathbf{x} \mathbf{a}\| < \epsilon\}$
- \mathbb{R}^{K} itself

Examples. of sets that are not open

- (*a*, *b*] because *b* is not interior
- [*a*, *b*) because *a* is not interior

Closed Sets

A set $F \subset \mathbb{R}^K$ is called **closed** if every convergent sequence in F converges to a point in F

Rephrased: If $\{\mathbf{x}_n\} \subset F$ and $\mathbf{x}_n \to \mathbf{x}$ for some $\mathbf{x} \in \mathbb{R}^K$, then $\mathbf{x} \in F$

Example. All of \mathbb{R}^{K} is closed because every sequence converging to a point in \mathbb{R}^{K} converges to a point in \mathbb{R}^{K} ... right?

Example. If $(-1,1) \subset \mathbb{R}$ is **not** closed

Proof: True because

1. $x_n := 1 - 1/n$ is a sequence in (-1, 1) converging to 1,

2. and yet $1 \notin (-1,1)$

Example. If $F = [a, b] \subset \mathbb{R}$ then F is closed in \mathbb{R}

Proof: Take any sequence $\{x_n\}$ such that

- $x_n \in F$ for all n
- $x_n \to x$ for some $x \in \mathbb{R}$

We claim that $x \in F$

Recall that (weak) inequalities are preserved under limits:

- $x_n \leq b$ for all n and $x_n \rightarrow x$, so $x \leq b$
- $x_n \ge a$ for all n and $x_n \to x$, so $x \ge a$

 $\therefore x \in [a,b] =: F$

Analysis in \mathbb{R}^{K}

Example. Any "hyperplane" of the form

$$H = \{\mathbf{x} \in \mathbb{R}^K : \mathbf{x}'\mathbf{a} = c\}$$

is closed

Proof: Fix $\mathbf{a} \in \mathbb{R}^{K}$ and $c \in \mathbb{R}$ and let H be as above Let $\{\mathbf{x}_n\} \subset H$ with $\mathbf{x}_n \to \mathbf{x} \in \mathbb{R}^K$ We claim that $\mathbf{x} \in H$ Since $\mathbf{x}_n \in H$ and $\mathbf{x}_n \to \mathbf{x}$ we have $\mathbf{x}'_{n}\mathbf{a} \to \mathbf{x}'\mathbf{a}$ in \mathbb{R} and $\mathbf{x}'_{n}\mathbf{a} = c$ for all n $\therefore \quad \mathbf{x}'\mathbf{a} = \lim_n \mathbf{x}'_n \mathbf{a} = \lim_n c = c$ \therefore **x** \in *H*

<ロト < 団 ト < 巨 ト < 巨 ト 三 · り へ C 33/50

Properties of Open and Closed Sets

Fact. $G \subset \mathbb{R}^K$ is open $\iff G^c$ is closed

Proof: Let's just check \implies

Pick any G and let $F := G^c$

Suppose to the contrary that G is open but F is not closed, so

 \exists a sequence $\{\mathbf{x}_n\} \subset F$ with limit $\mathbf{x} \notin F$

Then $\mathbf{x} \in G$, and since G open, $\exists \epsilon > 0$ such that $B_{\epsilon}(\mathbf{x}) \subset G$ Since $\mathbf{x}_n \to \mathbf{x}$ we can choose an $N \in \mathbb{N}$ with $\mathbf{x}_N \in B_{\epsilon}(\mathbf{x})$

This contradicts $\mathbf{x}_n \in F$ for all n

Facts

- 1. Any union of open sets is open
- 2. Any intersection of closed sets is closed

Proof of first fact:

Let $G := \bigcup_{\lambda \in \Lambda} G_{\lambda}$, where each G_{λ} is open

We claim that any given $\mathbf{x} \in G$ is interior to G

Pick any $\mathbf{x} \in G$

By definition, $\mathbf{x} \in G_{\lambda}$ for some λ

Since G_{λ} is open, $\exists \epsilon > 0$ such that $B_{\epsilon}(\mathbf{x}) \subset G_{\lambda}$

But $G_{\lambda} \subset G$, so $B_{\epsilon}(\mathbf{x}) \subset G$ also holds

In other words, \mathbf{x} is interior to G

Continuity

One of the most fundamental properties of functions

Related to existence of

- optima
- roots
- fixed points
- etc

as well as a variety of other useful concepts

Analysis in \mathbb{R}^{K}

Order

Let $F: A \to \mathbb{R}^J$ where A is a subset of \mathbb{R}^K

F is called **continuous** at $\mathbf{x} \in A$ if

$$\mathbf{x}_n \to \mathbf{x} \implies F(\mathbf{x}_n) \to F(\mathbf{x})$$

Requires that

- $F(\mathbf{x}_n)$ converges for each choice of $\mathbf{x}_n \to \mathbf{x}$,
- The limit is always the same, and that limit is $F(\mathbf{x})$

F is called **continuous** if it is continuous at every $\mathbf{x} \in A$

Figure : Continuity

Figure : Discontinuity at x

Example. Let \mathbf{A} be an $J \times K$ matrix and let $F(\mathbf{x}) = \mathbf{A}\mathbf{x}$ The function F is continuous at every $\mathbf{x} \in \mathbb{R}^{K}$

To see this take

- any $\mathbf{x} \in \mathbb{R}^{K}$
- any $\mathbf{x}_n \to \mathbf{x}$

By the definition of the matrix norm $\|\mathbf{A}\|$, we have

$$\|\mathbf{A}\mathbf{x}_n - \mathbf{A}\mathbf{x}\| = \|\mathbf{A}(\mathbf{x}_n - \mathbf{x})\| \le \|\mathbf{A}\| \|\mathbf{x}_n - \mathbf{x}\|$$

$$\therefore \quad \mathbf{x}_n \to \mathbf{x} \implies \mathbf{A}\mathbf{x}_n \to \mathbf{A}\mathbf{x}$$

Exactly what rules are we using here?

Some functions known to be continuous on their domains:

- $x \mapsto x^{\alpha}$
- $x \mapsto |x|$
- $x \mapsto \log(x)$
- $x \mapsto \exp(x)$
- $x \mapsto \sin(x)$
- $x \mapsto \cos(x)$
- etc

Discontinuous at zero: $x \mapsto \mathbb{1}\{x > 0\}$

Let F and G be functions and let $\alpha \in \mathbb{R}$

Facts

1. If F and G are continuous at x then so is F + G, where

$$(F+G)(\mathbf{x}) := F(\mathbf{x}) + G(\mathbf{x})$$

2. If F is continuous at x then so is αF , where

$$(\alpha F)(\mathbf{x}) := \alpha F(\mathbf{x})$$

3. If F and G are continuous at \mathbf{x} and real valued then so is FG, where

$$(FG)(\mathbf{x}) := F(\mathbf{x}) \cdot G(\mathbf{x})$$

In the latter case, if in addition $G(\mathbf{x}) \neq 0$, then F/G is also continuous

As a result, set of continuous functions is "closed" under elementary arithmetic operations

Example. The function $F \colon \mathbb{R} \to \mathbb{R}$ defined by

$$F(x) = \frac{\exp(x) + \sin(x)}{2 + \cos(x)} + \frac{x^4}{2} - \frac{\cos^3(x)}{8!}$$

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の へ で 43/50

is continuous

Proof: Just repeatedly apply the rules on the previous slide

Let's just check that

F and G continuous at $\mathbf{x} \implies F + G$ continuous at \mathbf{x}

Proof: Let F and G be continuous at \mathbf{x}

Pick any $\mathbf{x}_n \to \mathbf{x}$

We claim that $F(\mathbf{x}_n) + G(\mathbf{x}_n) \rightarrow F(\mathbf{x}) + G(\mathbf{x})$

By assumption, $F(\mathbf{x}_n) \to F(\mathbf{x})$ and $G(\mathbf{x}_n) \to G(\mathbf{x})$

From this and the triangle inequality we get

$$\|F(\mathbf{x}_n) + G(\mathbf{x}_n) - (F(\mathbf{x}) + G(\mathbf{x}))\|$$

$$\leq \|F(\mathbf{x}_n) - F(\mathbf{x})\| + \|G(\mathbf{x}_n) - G(\mathbf{x})\| \to 0$$

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の へ C 44/50

Order

Let \mathbf{x} and \mathbf{y} be vectors in \mathbb{R}^{K}

We write $x \leq y$ if every element is correspondingly ordered

Examples.

$$\begin{pmatrix} 1 \\ -2 \end{pmatrix} \leq \begin{pmatrix} 1 \\ 2 \end{pmatrix} \quad \text{but} \quad \begin{pmatrix} 1 \\ -2 \end{pmatrix} \nleq \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

Letting \mathbf{e}_k be the k-th canonical basis vector,

$$\mathbf{x} \leq \mathbf{y} \quad \Longleftrightarrow \quad \mathbf{e}_k' \mathbf{x} \leq \mathbf{e}_k' \mathbf{y}$$
 in \mathbbm{R} for all k

Figure : In $\mathbb{R}^2,\,x\leq y$ means y is north east of x

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の へ で 46/50

Fact. If $\mathbf{x}_n \to \mathbf{x}$, $\mathbf{y}_n \to \mathbf{y}$ and $\mathbf{x}_n \leq \mathbf{y}_n$ for all $n \in \mathbb{N}$, then $\mathbf{x} \leq \mathbf{y}$

• extends scalar result to the vector case

Proof: Assume that $\mathbf{x}_n \to \mathbf{x}$, $\mathbf{y}_n \to \mathbf{y}$ and $\mathbf{x}_n \leq \mathbf{y}_n$ for all nThe claim is that $\mathbf{e}'_k \mathbf{x} \leq \mathbf{e}'_k \mathbf{y}$ for any kFix k in $1, \ldots, K$ and note that

 $\mathbf{e}'_k \mathbf{x}_n \to \mathbf{e}'_k \mathbf{x}$ (because $\mathbf{x}_n \to \mathbf{x}$) $\mathbf{e}'_k \mathbf{y}_n \to \mathbf{e}'_k \mathbf{y}$ (because $\mathbf{y}_n \to \mathbf{y}$) $\mathbf{e}'_k \mathbf{x}_n \leq \mathbf{e}'_k \mathbf{y}_n$ for all n (because $\mathbf{x}_n \leq \mathbf{y}_n$ for all n)

Hence, by the corresponding scalar result, $\mathbf{e}'_k \mathbf{x} \leq \mathbf{e}'_k \mathbf{y}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Analysis in \mathbb{R}^{K}

A function $F \colon \mathbb{R}^K \to \mathbb{R}^J$ is called **increasing** if

 $\mathbf{x} \leq \mathbf{y} \implies F(\mathbf{x}) \leq F(\mathbf{y})$

If K = J = 1, then this is the usual notion — graph of the function goes up (weakly)

Examples.

- f(x) = x + c for any constant c
- f(x) = cx for any $c \ge 0$
- $f(x) = \log(x)$ over $x \in (0, \infty)$
- $f(x) = x^c$ for any $c \ge 0$ over $x \in [0, \infty)$

Derivatives	Analysis in \mathbb{R}^{K}	Open and Closed Sets	Continuity	Order

Figure : The function $f(x) = x^c$ on $[0, \infty)$ for different c

Example. If $\mathbf{a} \in \mathbb{R}^K$ satisfies $\mathbf{a} \ge \mathbf{0}$, then $f \colon \mathbb{R}^K \to \mathbb{R}$ defined by $f(\mathbf{x}) = \mathbf{a}'\mathbf{x}$

is increasing

Proof: Pick any \mathbf{x} , \mathbf{y} in \mathbb{R}^K with $\mathbf{x} \leq \mathbf{y}$

By assumption, a_k is nonnegative and $x_k \leq y_k$ for all k

$$\therefore \quad f(\mathbf{x}) = \mathbf{a}'\mathbf{x} = \sum_{k=1}^{K} a_k x_k \le \sum_{k=1}^{K} a_k y_k = f(\mathbf{y})$$

Ex. Letting A be any matrix, show that if all elements of A are nonnegative, then $x \mapsto Ax$ is increasing