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Introduction

In this lecture we study topics such as

• Convexity / concavity

• and uniqueness in optimization

• sufficient conditions for optimality

• how to detect these properties?

• Zeros of functions

• solving nonlinear equations

• existence of solutions

• applications
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Convex Sets

Uniqueness of optima often connected to convexity / concavity

• Convexity is a shape property for sets

• Convexity and concavity are shape properties for functions

However, only one fundamental concept: convex sets

A set C ⊂ RK is called convex if

x, y in C and 0 ≤ λ ≤ 1 =⇒ λx + (1− λ)y ∈ C

Remark: This is vector addition and scalar multiplication
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Convexity ⇐⇒ line between any two points in C lies in C

C

λx + (1− λ)y

αx + (1− α)y

y

x
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A non-convex set

C

λx + (1− λ)y

y
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Example. The “positive cone” P := {x ∈ RK : x ≥ 0} is convex

To see this, pick any x, y in P and any λ ∈ [0, 1]

Let z := λx + (1− λ)y and let zk := e′kz

Since

• zk = λxk + (1− λ)yk

• xk ≥ 0 and yk ≥ 0

It is clear that zk ≥ 0 for all k

Hence z ∈ P as claimed
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Example. Every ε-ball is convex

Proof: Fix a ∈ RK, ε > 0 and let Bε(a) be the ε-ball

Pick any x, y in Bε(a) and any λ ∈ [0, 1]

The point λx + (1− λ)y lies in Bε(a) because

‖λx + (1− λ)y− a‖ = ‖λx− λa + (1− λ)y− (1− λ)a‖

≤ ‖λx− λa‖+ ‖(1− λ)y− (1− λ)a‖

= λ‖x− a‖+ (1− λ)‖y− a‖

< λε + (1− λ)ε

= ε
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Example. Let p ∈ RK and let M be the “half-space”

M := {x ∈ RK : p′x ≤ m}

The set M is convex

Proof: Let p, m and M be as described

Fix x, y in M and λ ∈ [0, 1]

Then λx + (1− λ)y ∈ M because

p′[λx + (1− λ)y] =

λp′x + (1− λ)p′y ≤ λm + (1− λ)m = m

Hence M is convex
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Fact. If A and B are convex, then so is A ∩ B

Proof: Let A and B be convex and let C := A ∩ B

Pick any x, y in C and any λ ∈ [0, 1]

Set
z := λx + (1− λ)y

Since x and y lie in A and A is convex we have z ∈ A

Since x and y lie in B and B is convex we have z ∈ B

Hence z ∈ A ∩ B
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Example. Let p ∈ RK be a vector of prices and consider the
budget set

B(m) := {x ∈ RK : x ≥ 0 and p′x ≤ m}

The budget set B(m) is convex

To see this, note that B(m) = P ∩M where

P := {x ∈ RK : x ≥ 0} M := {x ∈ RK : p′x ≤ m}

We already know that

• P and M are convex, intersections of convex sets are convex

Hence B(m) is convex
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Convex Functions

Let A ⊂ RK be a convex set and let f be a function from A to R

f is called convex if

f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y)

for all x, y ∈ A and all λ ∈ [0, 1]

f is called strictly convex if

f (λx + (1− λ)y) < λ f (x) + (1− λ) f (y)

for all x, y ∈ A with x 6= y and all λ ∈ (0, 1)
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yλx + (1− λ)yx

f (λx + (1− λ)y)

f

λ f (x) + (1− λ) f (y)

Figure : A strictly convex function on a subset of R
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Fact. f : A→ R is convex if and only if its epigraph

E f := {(x, y) ∈ A×R : f (x) ≤ y}

is a convex subset of RK ×R
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Figure : A strictly convex function on a subset of R2
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Example. f (x) = ‖x‖ is convex on RK

To see this recall that, by the properties of norms,

‖λx + (1− λ)y‖ ≤ ‖λx‖+ ‖(1− λ)y‖

= λ‖x‖+ (1− λ)‖y‖

That is,

f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y)

Example. f (x) = cos(x) is not convex on R because

1 = f (2π) = f (π/2 + 3π/2) > f (π)/2 + f (3π)/2 = −1
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Fact. If A is K× K and positive definite, then

Q(x) = x′Ax (x ∈ RK)

is strictly convex on RK

Proof: Fix x, y ∈ RK with x 6= y and λ ∈ (0, 1)

Ex. Show that

λQ(x) + (1− λ)Q(y)−Q(λx + (1− λ)y)

= λ(1− λ)(x− y)′A(x− y)

Since x− y 6= 0 and 0 < λ < 1, the right hand side is > 0

Hence
λQ(x) + (1− λ)Q(y) > Q(λx + (1− λ)y)
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Concave Functions

Let A ⊂ RK be a convex and let f be a function from A to R

f is called concave if

f (λx + (1− λ)y) ≥ λ f (x) + (1− λ) f (y)

for all x, y ∈ A and all λ ∈ [0, 1]

f is called strictly concave if

f (λx + (1− λ)y) > λ f (x) + (1− λ) f (y)

for all x, y ∈ A with x 6= y and all λ ∈ (0, 1)
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Ex. Show that

1. f is concave if and only if − f is convex

2. f is strictly concave if and only if − f is strictly convex

Fact. f : A→ R is concave if and only if its hypograph

H f := {(x, y) ∈ A×R : f (x) ≥ y}

is a convex subset of RK ×R
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Preservation of Shape

Let A ⊂ RK be convex and let f and g be functions from A to R

Fact. If f and g are convex (resp., concave) and α ≥ 0, then

• α f is convex (resp., concave)

• f + g is convex (resp., concave)

Fact. If f and g are strictly convex (resp., strictly concave) and
α > 0, then

• α f is strictly convex (resp., strictly concave)

• f + g is strictly convex (resp., strictly concave)
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Let’s prove that f and g convex =⇒ h := f + g convex

Pick any x, y ∈ A and λ ∈ [0, 1]

We have

h(λx + (1− λ)y) = f (λx + (1− λ)y) + g(λx + (1− λ)y)

≤ λ f (x) + (1− λ) f (y) + λg(x) + (1− λ)g(y)

= λ[ f (x) + g(x)] + (1− λ)[ f (y) + g(y)]

= λh(x) + (1− λ)h(y)

Hence h is convex
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Derivative Conditions

The i, j-th cross partial of f : A→ R at x ∈ A is

fij(x) :=
∂2

∂xi∂xj
f (x) (1 ≤ i, j ≤ K)

We say that f is a C2 function if these partials are all continuous
in x for all x ∈ A

The Hessian matrix of f at x is the matrix of cross partials

H(x) :=

 f11(x) · · · f1K(x)
...

fK1(x) · · · fKK(x)
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Fact. If f : A→ R is a C2 function where A ⊂ RK is open and
convex, then

1. H(x) nonnegative definite for all x ∈ A ⇐⇒ f convex

2. H(x) nonpositive definite for all x ∈ A ⇐⇒ f concave

In addition,

1. H(x) positive definite for all x ∈ A =⇒ f strictly convex

2. H(x) negative definite for all x ∈ A =⇒ f strictly concave

Proof: Omitted
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Example. Let A := (0, ∞)× (0, ∞) and let U : A→ R be the
utility function

U(c1, c2) = α ln c1 + β ln c2

Assume that α and β are both strictly positive

Ex. Show that the Hessian at c := (c1, c2) ∈ A has the form

H(c) :=

(− α
c2

1
0

0 − β

c2
2

)

Ex. Show that any diagonal matrix with strictly negative elements
along the principle diagonal is negative definite

Conclude that U is strictly concave on A
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Uniqueness of Maximizers and Minimizers

Let A ⊂ RK be convex and let f : A→ R

Facts

1. If f is strictly convex, then f has at most one minimizer on A

2. If f is strictly concave, then f has at most one maximizer on
A

Interpretation, strictly concave case:

• we don’t know in general if f has a maximizer

• but if it does, then it has exactly one

• in other words, we have uniqueness
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Proof for the case where f is strictly concave:

Suppose to the contrary that

• a and b are distinct points in A

• both are maximizers of f on A

By the def of maximizers, f (a) ≥ f (b) and f (b) ≥ f (a)

Hence we have f (a) = f (b)

By strict concavity, then

f
(

1
2

a +
1
2

b
)
>

1
2

f (a) +
1
2

f (b) =
1
2

f (a) +
1
2

f (a) = f (a)

This contradicts the assumption that a is a maximizer
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A Sufficient Condition

We can now restate more precisely optimization results stated in
the introductory lectures

Let f : A→ R be a C2 function where A ⊂ RK is open, convex

Recall that x∗ ∈ A is a stationary point of f if

∂

∂xi
f (x∗) = 0 for all i in 1, . . . , K

Fact. If f and A are as above and x∗ ∈ A is stationary, then

1. f strictly concave =⇒ x∗ is the unique maximizer of f on A

2. f strictly convex =⇒ x∗ is the unique minimizer of f on A
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x1

x2
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Example. In an introductory lecture we studied the problem

max
k,`

π(k, `) := pkα`β − w`− rk

where all parameters are > 0 and α + β < 1

Points on the boundary (either k = 0 or ` = 0) generate ≤ 0
profits and hence are never maximal

Hence we concentrate on interior points:

max
(k,`)∈A

π(k, `) where A := (0, ∞)× (0, ∞)

Ex. Show that A is open and convex

We already showed that π is strictly concave, so any stationary
point is a unique maximizer
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Algorithms

Another benefit of concavity / convexity for optimization: finding
optima on computers is much easier

A sample algorithm might be

1. Start at some x

2. Evaluate the slope of f at x

3. Take a step “uphill” to a new point y

4. Set x to y and go to step 2

For more details look up “hill climbing” or “steepest ascent”

If f is concave then this procedure typically converges
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Zeros of Functions

Let f : A→ R where A ⊂ R

A point x̄ ∈ A is called a zero or root of f if f (x̄) = 0

Example. If f : R→ R is defined by f (x) = |x| then 0 is the
unique zero of f

Example. If f : R→ R is defined by f (x) = x− b then b is the
unique zero of f

Example. If f : R→ R is defined by f (x) = (x− 1)(x + 1) then
−1 and 1 are both zeros of f
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f

0

x̄

Figure : Zero of a function
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The problem of finding zeros is important for many reasons

One example is finding stationary points of functions

Another is solving nonlinear equations

Example. Suppose we want to find all x such that

g(x) = b (?)

We can recast this as a problem of finding zeros by defining

f (x) := g(x)− b

Now x is a zero of f ⇐⇒ x solves (?)
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Example. The McCall job search model

Features an agent who decides when to accept a job offer

In a simplified version of the model, the agent

• receives offer wt in period t where {wt} is iid

• accepts this offer at time t or remains unemployed

• if unemployed receives compensation c > 0

• if accepts then works indefinitely at this wage

• discounts the future at rate β ∈ (0, 1)

Optimal strategy: set a reservation wage w̄

• Accept the first offer wt such that wt ≥ w̄
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It can be shown (details omitted) that w̄ should satisfy

w̄
1− β

= c +
β

1− β

K

∑
k=1

max {wk, w̄} pk (?)

• w1, . . . , wK are possible wage values with pmf p1, . . . , pK

Does there exists a w̄ ∈ [0, ∞) that solves (?)?

To study this problem, let

f (x) =
x

1− β
− c− β

1− β

K

∑
k=1

max {wk, x} pk

We seek a zero of f on [0, ∞)
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Existence of Zeros

Of course zeros can fail to exist

Example. If f (x) > 0 on its domain then f has no zero

Example. If f (x) < 0 on its domain then f has no zero

A more interesting case is when

• f (x) ≤ 0 for some x

• f (x) ≥ 0 for some x

But even then we don’t always have a zero
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Let f : [a, b]→ R

Fact. (Intermediate Value Theorem) If f (a) < 0 < f (b) and f is
continuous, then f has a zero in [a, b]

Sketch of proof: Let

• N := {x ∈ [a, b] : f (x) < 0}

• x̄ := sup N

It can be shown from the hypotheses that f (x̄) = 0

Details will be given in the solved exercises

Ex. Using the IVT, show that the same result holds if f is
continuous and f (b) < 0 < f (a)
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Figure : Existence of a root
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Example. Let f : [0, 1]→ R be defined by

f (x) = sin(4(x− 1/4)) + x + x20 − 1

This function is continuous on [0, 1]

Moreover,

• f (0) = sin(−1)− 1 < 0

• f (1) = sin(3) + 1 > 0

Hence f has at least on zero on [0, 1]
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Obtaining the zero using a bisection algorithm:

In [3]: import numpy as np

In [4]: from scipy.optimize import bisect

In [5]: def f(x):

...: return np.sin(4*(x - 0.25)) + x + x**20 - 1

...:

In [6]: bisect(f, 0, 1)

Out[6]: 0.4082935042797544
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Example. Recall that in solving the McCall model we sought a zero
of

f (x) =
x

1− β
− c− β

1− β

K

∑
k=1

max {wk, x} pk

where

• p1, . . . , pK is a pmf and 0 < wk < ∞

• c > 0 and β ∈ (0, 1)

This function is continuous — details omitted (but not hard)

We claim that f (0) < 0 < f (x̂) when

x̂ := max{c, w1, . . . , wK}+ 1
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To show that f (x̂) > 0, note that x̂ > wk for all k

Hence max{wk, x̂} = x̂, and

f (x̂) =
x̂

1− β
− c− β

1− β

K

∑
k=1

max {wk, x̂} pk

=
x̂

1− β
− c− βx̂

1− β
= x̂− c

By construction, x̂ > c

Hence f (x̂) > 0 as claimed

Ex. Show that f (0) < 0 also holds

Conclusion: f has at least one solution on [0, x̂]
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