
1/68

Computing Univariate Optimization Visualization Bivariate Optimization Shape Conditions

ECON2125/8013

Lecture 2

John Stachurski

Semester 1, 2015



2/68

Computing Univariate Optimization Visualization Bivariate Optimization Shape Conditions

Today’s tasks

• Some comments on computing

Review / introduce some basic tools for problem solving

• Univariate optimization

• Working with multivariate functions

• Multivariate optimization
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Comments on Computing

The way we do mathematics is changing

Example. In 1944, Hans Bethe solved following problem by hand

• will detonating an atom bomb ignite the atmosphere and
thereby destroy life on earth?

These days we rarely calculate with actual numbers

Almost all calculations are done on computers
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Example. Numerical integration

1√
2π

∫ 2

−2
exp

{
− x2

2

}
dx

In [1]: from scipy.stats import norm

In [2]: from scipy.integrate import quad

In [3]: phi = norm()

In [4]: value, error = quad(phi.pdf, -2, 2)

In [5]: value

Out[5]: 0.9544997361036417
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Example. Numerical optimization

f (x) := − exp
{
− (x− 5.0)4

1.5

}

In [1]: from scipy.optimize import fminbound

In [2]: import numpy as np

In [3]: def f(x): return -np.exp(-(x - 5.0)**4 / 1.5)

In [4]: fminbound(f, -10, 10) # Find approx solution

Out[4]: 4.9999419012105006
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Example. Visualization

What does this function look like?

f (x, y) =
cos(x2 + y2)

1 + x2 + y2
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Example. Symbolic calculations

Let’s differentiate f (x) = (1 + 2x)5

Forgotten how? No problems:

In [1]: import sympy as sp

In [2]: x = sp.Symbol(’x’)

In [3]: fx = (1 + 2 * x)**5

In [4]: fx.diff(x)

Out[4]: 10*(2*x + 1)**4
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So if computers can do our maths for us, why learn maths?

The difficulty is

• giving them the right inputs and instructions

• interpreting what comes out

The skills we need are

• Understanding of fundamental concepts

• Sound deductive reasoning

These are the focus of the course
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Computer Code in the Lectures

While computation is not a formal part of the course...

Throughout the course I’ll inject little bits of code into the course

All the code will be written in the Python programming language

• This is meant to illustrate the kinds of things we can do

• It is not assessable
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You might find value in actually running the code shown in lectures

(If not for the course then more generally)

Python and all its scientific code libraries are free to install

If you want to do so please refer to

http://quant-econ.net/py/index.html

In particular,

http://quant-econ.net/py/getting started.html
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Univariate Optimization – A Review

Let f : [a, b]→ R be a differentiable (smooth) function

Here:

• [a, b] is all x with a ≤ x ≤ b
• R is “all numbers”

• f takes x ∈ [a, b] and returns number f (x)
• derivative f ′(x) exists for all x with a < x < b
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A point x∗ ∈ [a, b] is called a

• maximizer of f on [a, b] if f (x∗) ≥ f (x) for all x ∈ [a, b]
• minimizer of f on [a, b] if f (x∗) ≤ f (x) for all x ∈ [a, b]

Example. Let

• f (x) = −(x− 4)2 + 10
• a = 2 and b = 8

Then

• x∗ = 4 is a maximizer of f on [2, 8]
• x∗∗ = 8 is a minimizer of f on [2, 8]
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Figure : Maximizer on [a, b] = [2, 8] is x∗ = 4
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Figure : Minimizer on [a, b] = [2, 8] is x∗∗ = 8
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The set of maximizers/minimizers can be

• empty

• a singleton

• infinite

Example. f : [0, 1]→ R defined by f (x) = 1 has infinitely many
maximizers and minimizers on [0, 1]

Example. The following function has no maximizers on [0, 2]

f (x) =

{
x2 if x < 1
1/2 otherwise
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Figure : No maximizer on [0, 2]
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Point x is called interior to [a, b] if a < x < b

The set of all interior points is written (a, b)

A point x∗ ∈ [a, b] is called an

• interior maximizer if both a maximizer and interior

• interior minimizer if both a minimizer and interior
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Finding Optima

A stationary point of f on [a, b] is an interior point x with
f ′(x) = 0

x∗

x∗∗

f

Figure : Both x∗ and x∗∗ are stationary
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Fact. If f is differentiable and x∗ is either an interior minimizer or
an interior maximizer of f on [a, b], then x∗ is stationary

Sketch of proof, for maximizers:

f ′(x∗) = lim
h→0

f (x∗ + h)− f (x∗)
h

(by def.)

∴ f (x∗ + h) ≈ f (x∗) + f ′(x∗)h for small h

If f ′(x∗) 6= 0 then exists small h such that f (x∗ + h) > f (x∗)

Hence interior maximizers must be stationary — otherwise can do
better
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∴ any interior maximizer stationary

∴ set of interior maximizers ⊂ set of stationary points

∴ maximizers ⊂ stationary points ∪{a} ∪ {b}

Usage:

• Locate stationary points

• Evaluate y = f (x) for each stationary x and for a, b
• Pick point giving largest y value

Minimization: Same idea
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Example

Let’s solve

max
−2≤x≤5

f (x) where f (x) = x3 − 6x2 + 4x + 8

Steps

• Differentiate to get f ′(x) = 3x2 − 12x + 4
• Solve 3x2 − 12x + 4 = 0 to get stationary x
• Discard any stationary points outside [−2, 5]
• Eval f at remaining points plus end points −2 and 5
• Pick point giving largest value
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from sympy import *

x = Symbol(’x’)

points = [-2, 5]

f = x**3 - 6*x**2 + 4*x + 8

fp = diff(f, x)

spoints = solve(fp, x)

points.extend(spoints)

v = [f.subs(x, c).evalf() for c in points]

msg = "Maximizer = "

print msg + str(points[v.index(max(v))])

Prints: Maximizer = 2 - 2*sqrt(6)/3, which is ≈ 0.367
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Shape Conditions and Sufficiency

When is f ′(x∗) = 0 sufficient for x∗ to be a maximizer?

One answer: When f is concave

1 0 1

15

10

5

5

10

concave f

(Full definition deferred — sufficient conditions below)
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Sufficient conditions for concavity in one dimension

Let f : [a, b]→ R

Facts

• If f ′′(x) ≤ 0 for all x ∈ (a, b) then f is concave on (a, b)
• If f ′′(x) < 0 for all x ∈ (a, b) then f is strictly concave on
(a, b)

Examples.

• f (x) = a + bx is concave on R but not strictly

• f (x) = log(x) is strictly concave on (0, ∞)
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When is f ′(x∗) = 0 sufficient for x∗ to be a minimizer?

One answer: When f is convex
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convex f

(Full definition deferred — sufficient conditions below)
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Sufficient conditions for convexity in one dimension

Let f : [a, b]→ R

Facts

• If f ′′(x) ≥ 0 for all x ∈ (a, b) then f is convex on (a, b)
• If f ′′(x) > 0 for all x ∈ (a, b) then f is strictly convex on
(a, b)

Examples.

• f (x) = a + bx is convex on R but not strictly

• f (x) = x2 is strictly convex on R
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Facts for maximizers

• If f : [a, b]→ R is concave and x∗ ∈ (a, b) is stationary then
x∗ is a maximizer

• If, in addition, f is strictly concave, then x∗ is the unique
maximizer

Facts for minimizers

• If f : [a, b]→ R is convex and x∗ ∈ (a, b) is stationary then
x∗ is a minimizer

• If, in addition, f is strictly convex, then x∗ is the unique
minimizer
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Example

A price taking firm faces output price p > 0, input price w > 0

Maximize profits with respect to input `

max
`≥0

π(`) = p f (`)− w`

• f (`) = `α with 0 < α < 1

Evidently π′(`) = αp`α−1 − w so unique stationary point is

`∗ := (αp/w)1/(1−α)

Moreover π′′(`) = α(α− 1)p`α−2 < 0 for all ` so `∗ is unique
maximizer
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Figure : Profit maximization with p = 2, w = 1, α = 0.6
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Functions of Two Variables

Let’s have a look at some functions of two variables

• How to visualize them

• Slope, contours, etc.

Example. Consider production function

f (k, `) = kα`β

0 ≤ α, β α + β < 1

Let’s graph it in two dimensions
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Figure : Production function with α = 0.4, β = 0.5
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Figure : Production function with α = 0.4, β = 0.5
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Figure : Production function with α = 0.4, β = 0.5
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Like many 3D plots it’s hard to get a good understanding

Let’s try again with contours plus heat map
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Figure : Production function with α = 0.4, β = 0.5
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(In this context the contour lines are called isoquants)

Can you see how α < β shows up in the slope of the contours?

We can drop the colours to see the numbers more clearly
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Figure : Production function with α = 0.4, β = 0.5



40/68

Computing Univariate Optimization Visualization Bivariate Optimization Shape Conditions

Example. Let u(x1, x2) be “utility” gained from x1 units of good 1
and x2 units of good 2

We take
u(x1, x2) = α log(x1) + β log(x2)

where

• α and β are parameters

• We assume α, β > 0

• The log functions mean “diminishing returns” in each good
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Figure : Log utility with α = 0.4, β = 0.5
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Let’s look at the contour lines

For utility functions, contour lines called indifference curves
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Figure : Log utility with α = 0.4, β = 0.5
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Another example: Quasi-linear utility function, two goods

u(x1, x2) = x1 + log(x2)

• Called quasi-linear because linear in good 1
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Another example: Quadratic utility, two goods

u(x1, x2) = −(x1 − b1)
2 − (x2 − b2)

2

Here

• b1 is a “satiation” or “bliss” point for x1

• b2 is a “satiation” or “bliss” point for x2

Dissatisfaction increases with deviations from the bliss points
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Figure : Quadratic utility with b1 = 3 and b2 = 2
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Figure : Quadratic utility with b1 = 3 and b2 = 2
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Bivariate Optimization

Consider f : I → R where I ⊂ R2

The set R2 is all (x1, x2) pairs

A point (x∗1 , x∗2) ∈ I is called a maximizer of f on I if

f (x∗1 , x∗2) ≥ f (x1, x2) for all (x1, x2) ∈ I

A point (x∗1 , x∗2) ∈ I is called a minimizer of f on I if

f (x∗1 , x∗2) ≤ f (x1, x2) for all (x1, x2) ∈ I
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When they exist, the partial derivatives at (x1, x2) ∈ I are

f1(x1, x2) :=
∂

∂x1
f (x1, x2)

f2(x1, x2) :=
∂

∂x2
f (x1, x2)

Example. When f (k, `) = kα`β,

f1(k, `) =
∂

∂k
f (k, `) =

∂

∂k
kα`β = αkα−1`β

An interior point (x1, x2) ∈ I is called stationary for f if

f1(x1, x2) = f2(x1, x2) = 0
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Fact. Let f : I → R be a continuously differentiable function. If
(x∗1 , x∗2) is either

• an interior maximizer of f on I, or

• an interior minimizer of f on I,

then (x∗1 , x∗2) is a stationary point of f

Usage, for maximization:

1. Compute partials

2. Set partials to zero to find S := all stationary points

3. Evaluate candidates in S and boundary of I

4. Select point (x∗1 , x∗2) yielding highest value
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Example. Testing on an obvious example:

min f (x1, x2) = x2
1 + 4x2

2 s.t. x1 + x2 ≤ 1

Setting

f1(x1, x2) = 2x1 = 0 and f2(x1, x2) = 8x2 = 0

gives the unique stationary point (0, 0), at which f (0, 0) = 0

On the boundary we have x1 + x2 = 1, so

f (x1, x2) = f (x1, 1− x1) = x2
1 + 4(1− x1)

2

Ex. Show right hand side > 0 for any x1

Hence minimizer is (x∗1 , x∗2) = (0, 0)
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Nasty secrets

Solving for (x1, x2) such that f1(x1, x2) = 0 and f2(x1, x2) = 0
can be hard

• System of nonlinear equations

• Might have no analytical solution

• Set of solutions can be a continuum

Example. (Don’t) try to find all stationary points of

f (x1, x2) =
cos(x2

1 + x2
2) + x2

1 + x1

2 + exp(−x2
1) + sin2(x2)
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Also:

• Boundary is often a continuum, not just two points

• Things get even harder in higher dimensions

On the other hand:

• Most classroom examples are chosen to avoid these problems

• Life is still pretty easy if we have concavity / convexity

• Clever tricks have been found for certain kinds of problems
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Second Order Partials

Let f : I → R and, when they exist, let

f11(x1, x2) :=
∂2

∂x2
1

f (x1, x2)

f12(x1, x2) :=
∂2

∂x1∂x2
f (x1, x2)

f21(x1, x2) :=
∂2

∂x2∂x1
f (x1, x2)

f22(x1, x2) :=
∂2

∂x2
2

f (x1, x2)
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Example. If π(k, `) := pkα`β − w`− rk then

π11(k, `) = pα(α− 1)kα−2`β

Fact. If f : I → R is twice continuously differentiable at (x1, x2),
then

f12(x1, x2) = f21(x1, x2)

Ex. Confirm that

π12(k, `) = π21(k, `) = pαβkα−1`β−1
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Shape Conditions

Let I be an “open” set (only interior points – formalities later)

Let f : I → R be twice continuously differentiable

The function f is strictly concave on I if, for any (x1, x2) ∈ I,

1. f11(x1, x2) < 0
2. f11(x1, x2) f22(x1, x2) > f12(x1, x2)2

The function f is strictly convex on I if, for any (x1, x2) ∈ I,

1. f11(x1, x2) > 0
2. f11(x1, x2) f22(x1, x2) > f12(x1, x2)2
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When is stationarity sufficient?

Fact. If f is differentiable and strictly concave on I, then any
stationary point of f is also a unique maximizer of f on I

Fact. If f is differentiable and strictly convex on I, then any
stationary point of f is also a unique minimizer of f on I
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Figure : Maximizer of a concave function
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Figure : Minimizer of a convex function
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Example. Quadratic utility, unconstrained

max
x1,x2

u(x1, x2) = −(x1 − b1)
2 − (x2 − b2)

2

Intuitively the solution is x∗1 = b1 and x∗2 = b2

Analysis above leads to the same conclusion

First let’s check first order conditions

∂

∂x1
u(x1, x2) = −2(x1 − b1) = 0 =⇒ x1 = b1

∂

∂x2
u(x1, x2) = −2(x2 − b2) = 0 =⇒ x2 = b2
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How about strict concavity?

Sufficient condition is

1. u11(x1, x2) < 0

2. u11(x1, x2)u22(x1, x2) > u12(x1, x2)2

Here

1. u11(x1, x2) = −2

2. u11(x1, x2)u22(x1, x2) = 4 > 0 = u12(x1, x2)2



64/68

Computing Univariate Optimization Visualization Bivariate Optimization Shape Conditions

Example. Profit maximization with two inputs

max
k,`

π(k, `) := pkα`β − w`− rk

where α, β, p, w are all > 0 and α + β < 1

Derivatives:

• π1(k, `) = pαkα−1`β − r
• π2(k, `) = pβkα`β−1 − w
• π11(k, `) = pα(α− 1)kα−2`β

• π22(k, `) = pβ(β− 1)kα`β−2

• π12(k, `) = pαβkα−1`β−1
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First order conditions: Set

π1(k, `) = 0

π2(k, `) = 0

and solve simultaneously for k, ` to get

k∗ =
[

p(α/r)1−β(β/w)β
]1/(1−α−β)

`∗ =
[

p(β/w)1−α(α/r)α
]1/(1−α−β)

Ex. Verify
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Now we check second order conditions, hoping for strict concavity

What we need: For any k, ` > 0,

π11(k, `) < 0 and π11(k, `)π22(k, `) > π12(k, `)2

Ex. Show both inequalities satisfied when α + β < 1
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Figure : Profit function when p = 5, r = w = 2, α = 0.4, β = 0.5
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Figure : Optimal choice, p = 5, r = w = 2, α = 0.4, β = 0.5
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