<ロ > < 母 > < 喜 > < 喜 > 言 の Q @ 1/25

ECON2125/4021/8013

Lecture 20

John Stachurski

Semester 1, 2015

Introduction

In this lecture we continue to study nonlinear equations

- Which problems have solutions?
- When do we have uniqueness?
- How can we compute solutions?
- How can we apply these ideas?

We will study these problems from the perspective of fixed point theory

• An important branch of analysis

Fixed Points

Let $T: S \to S$ where $S \subset \mathbb{R}^K$

- The function T is a "self-mapping" because it maps S to S
- We write $T\mathbf{x}$ instead of $T(\mathbf{x})$ below

A point $\mathbf{x}^* \in S$ is called a **fixed point** of T if

$$T\mathbf{x}^* = \mathbf{x}^*$$

Related to

- optimization because \mathbf{x}^* solves $\min_{\mathbf{x}\in S} \|T\mathbf{x} \mathbf{x}\|$
- zeros because \mathbf{x}^* solves $H(\mathbf{x}) = \mathbf{0}$ for $H(\mathbf{x}) := T\mathbf{x} \mathbf{x}$

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の Q (P 3/25

Example. If $f \colon \mathbb{R} \to \mathbb{R}$ is the identity f(x) = x, then every $x \in \mathbb{R}$ is a fixed point

Example. If $f \colon \mathbb{R} \to \mathbb{R}$ is defined by f(x) = x + 1, then no $x \in \mathbb{R}$ is a fixed point

Example. Let $f \colon [0,1] \to [0,1]$ be defined by

$$f(x) = 4x(1-x)$$

Then $x = \frac{3}{4}$ is a fixed point of f because

$$f\left(\frac{3}{4}\right) = 4\frac{3}{4}\left(1 - \frac{3}{4}\right) = \frac{3}{4}$$

Figure : Fixed points in one dimension

Brouwer's Fixed Point Theorem

Fact. If $S \subset \mathbb{R}^K$ is closed, bounded and convex and $T: S \to S$ is continuous, then T has at least one fixed point in S

Proof for case S = [0, 1]

Let

• T be a continuous function from [0,1] to [0,1]

•
$$f(x) := x - Tx$$

Ex. Show that f is continuous on [0,1] and $f(0) \le 0 \le f(1)$ Result now follows from the Intermediate Value Theorem

General proof: Quite long, omitted

<ロト 4 個 ト 4 星 ト 4 星 ト 星 の 9 9 9 7/25

Figure : Brouwer fixed point theorem in one dimension

<ロ > < 母 > < 喜 > < 喜 > 言 の < で 8/25

Figure : When continuity fails the theorem does not apply

Contractions

Like the Intermediate Value Theorem, Brouwer's fixed point theorem can give us existence

But do we have uniqueness?

Uniqueness is important in practice

- "My model predicts this..."
 - or this...
 - or this...

Also important is finding that fixed point

Let's look at a method that makes strong assumptions but gives us uniqueness and a way to find the fixed point

Let $S \subset \mathbb{R}^K$ and let $T: S \to S$

T is called a **contraction mapping** on S if

$$\exists \ eta < 1 \quad ext{s.t.} \quad \|T\mathbf{x} - T\mathbf{y}\| \le eta \|\mathbf{x} - \mathbf{y}\| \quad ext{for all} \quad \mathbf{x}, \mathbf{y} \in S$$

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の へ で 10/25

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の へ で 11/25

Example. Let $T \colon \mathbb{R} \to \mathbb{R}$ be defined by

$$Tx = ax + b$$

where a and b are parameters

For any $x, y \in \mathbb{R}$ we have

$$|Tx - Ty| = |ax + b - ay - b|$$
$$= |ax - ay|$$
$$= |a(x - y)|$$
$$= |a||x - y|$$

Hence $|a| < 1 \implies T$ is a contraction mapping on $\mathbb R$

(ロ)、(日)、(日)、(日)、(日)、(日)、(12/25)

Fact. If T is a contraction mapping on S then T is continuous on S

Proof: Pick

- any $\mathbf{x} \in S$
- any sequence $\{\mathbf{x}_n\}$ with $\mathbf{x}_n \to \mathbf{x}$

Since T is a contraction on S, we can find a $\beta < 1$ with

$$\|T\mathbf{x}_n - T\mathbf{x}\| \le \beta \|\mathbf{x}_n - \mathbf{x}\| \quad \forall n \in \mathbb{N}$$

Since $\|\mathbf{x}_n - \mathbf{x}\| \to 0$ we see that $\|T\mathbf{x}_n - T\mathbf{x}\| \to 0$

Hence $T\mathbf{x}_n \rightarrow T\mathbf{x}$, and T is continuous as claimed

Banach Contraction Mapping Theorem

Fact. If S is closed and T is a contraction mapping on S then

- 1. T has a unique fixed point $\bar{\mathbf{x}} \in S$
- 2. $T^n \mathbf{x} \to \bar{\mathbf{x}}$ as $n \to \infty$ for any $\mathbf{x} \in S$

Proof of uniqueness: Suppose that $\mathbf{x}, \mathbf{y} \in S$ with

$$T\mathbf{x} = \mathbf{x}$$
 and $T\mathbf{y} = \mathbf{y}$

Then

$$\|\mathbf{x} - \mathbf{y}\| = \|T\mathbf{x} - T\mathbf{y}\| \le \beta \|\mathbf{x} - \mathbf{y}\|$$

Since eta < 1, it must be that $\| \mathbf{x} - \mathbf{y} \| = 0$, and hence $\mathbf{x} = \mathbf{y}$

・ロト ・ 日 ・ ・ 王 ・ 王 ・ ク へ で 14/25

Sketch of existence proof: Fix $\mathbf{x} \in S$ and let

$$d := \|T\mathbf{x} - \mathbf{x}\|$$

It can be shown that $||T^{n+1}\mathbf{x} - T^n\mathbf{x}|| \le \beta^n d$ for all n

One can then show that $\{\mathbf{x}_n\} := \{T^n \mathbf{x}\}$ is Cauchy The Cauchy property implies convergence to some $\bar{\mathbf{x}} \in S$ It can then be shown that $\bar{\mathbf{x}}$ is a fixed point By the way, why does S need to be closed?

An example of failure when S is not closed:

-

$$Tx = x/2$$
 and $S = (0, \infty)$

<ロト < 回 ト < 三 ト < 三 ト 三 の へ で 15/25

<ロト < 団ト < 臣ト < 臣ト 王 のへで 16/25

Example. Recall: If $\mathbf{b} \in \mathbb{R}^N$ and \mathbf{A} is $N \times N$ with $\|\mathbf{A}\| < 1$ then $\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{b}$ has a unique solution

• this is part of the Neumann series lemma

One proof: Define $T: \mathbb{R}^N \to \mathbb{R}^N$ by $T\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{b}$ A fixed point of $T \iff$ a solution of $\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{b}$ For any \mathbf{x} and \mathbf{y} in \mathbb{R}^N we have

$$\|T\mathbf{x} - T\mathbf{y}\| = \|\mathbf{A}\mathbf{x} - \mathbf{A}\mathbf{y}\|$$
$$= \|\mathbf{A}(\mathbf{x} - \mathbf{y})\|$$
$$\leq \|\mathbf{A}\|\|\mathbf{x} - \mathbf{y}\|$$

A contraction on \mathbb{R}^N with $\beta := \|\mathbf{A}\|$

<ロト < 母 ト < 三 ト < 三 ト 三 の へ C 17/25

Comments on Iteration

Suppose that

- T is a contraction mapping on closed set S
- $\bar{\mathbf{x}}$ is the unique fixed point

We know that for any $\mathbf{x} \in S$ we have $T^n \mathbf{x} \to \bar{\mathbf{x}}$

This means that we can compute the fixed point "iteratively"

- 1. Pick any $\mathbf{x} \in S$
- 2. Let $\mathbf{y} = T\mathbf{x}$
- 3. Set $\mathbf{x} = \mathbf{y}$ and go to step 2

This generates the sequence $\mathbf{x}, T\mathbf{x}, T^2\mathbf{x}, \dots$

Application: Job Search Again

Let's apply these ideas to solving the the McCall job search model We seek a \bar{w} that solves the reservation wage equation

$$\bar{w} = c(1-\beta) + \beta \sum_{k=1}^{K} \max\{w_k, \bar{w}\} p_k$$
 (*)

Here c > 0, $\beta \in (0,1)$ and p_1, \ldots, p_K is a pmf

Note that \bar{w} solves (\star) if and only if it is a fixed point of

$$Tx = c(1-eta) + eta \sum_{k=1}^{K} \max \left\{ w_k, x
ight\} p_k$$

Ex. Check it

Claim: The operator T defined by

$$Tx = c(1-eta) + eta \sum_{k=1}^{K} \max\left\{w_k, x\right\} p_k$$

is a contraction mapping on $S := [0, \infty)$

To check this we'll use two facts:

Fact. If x_1, \ldots, x_K are any K numbers, then $\left|\sum_{k=1}^K x_k\right| \leq \sum_{k=1}^K |x_k|$

• Any extension of the triangle inequality to K numbers

Fact. For any *a*, *x*, *y* in \mathbb{R} , $|\max\{a, x\} - \max\{a, y\}| \le |x - y|$

• Draw a picture, check the different possibilities

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 のへで 20/25

Proof: For any $x, y \in S$, we have

$$|Tx - Ty| = \left| \beta \sum_{k=1}^{K} \max \{w_k, x\} p_k - \beta \sum_{k=1}^{K} \max \{w_k, y\} p_k \right|$$

$$= \beta \left| \sum_{k=1}^{K} \left[\max \left\{ w_k, x \right\} - \max \left\{ w_k, y \right\} \right] \, p_k \right|$$

$$\leq eta \sum\limits_{k=1}^{K} \left| \max \left\{ w_k, \, x
ight\} - \max \left\{ w_k, \, y
ight\}
ight| \, p_k$$

$$\leq \beta \sum_{k=1}^{K} |x - y| \, p_k = \beta |x - y|$$

Since $\beta < 1$, we see that T is indeed a contraction on S

(ロ)、(日)、(三)、(三)、(三)、(21/25)

Equivalent Norms

Recall that $\|\mathbf{x} - \mathbf{y}\|$ is a measure of "distance" between \mathbf{x} and \mathbf{y}

• called the Euclidean distance between x and y

There are other notions of distance that are also useful This leads us to introduce the family of p-norms

$$\|\mathbf{x}\|_p := \left(\sum_{k=1}^K |x_k|^p\right)^{1/p}$$
 if $1 \le p < \infty$

and

$$\|\mathbf{x}\|_{\infty} := \max_{1 \le k \le K} |x_k|$$

If p = 2 then this is the Euclidean norm

Let $p \in [1, \infty]$ and let $\{\mathbf{x}_n\}$ be a sequence in \mathbb{R}^K We say that $\mathbf{x}_n \to \mathbf{x}$ in *p*-norm if

$$\|\mathbf{x}_n-\mathbf{x}\|_p o 0$$
 as $n o \infty$

If p = 2 this is ordinary Euclidean convergence

The next fact generalizes an earlier result about Euclidean distance

Fact. A sequence in \mathbb{R}^{K} converges in *p*-norm \iff each component sequence converges in \mathbb{R}

That is, for any $p \in [1,\infty]$ and sequence $\{\mathbf{x}_n\}$ we have

 $\|\mathbf{x}_n - \mathbf{x}\|_p \to 0 \quad \iff \quad |\mathbf{e}'_k \mathbf{x}_n - \mathbf{e}'_k \mathbf{x}| \to 0 \text{ in } \mathbb{R} \text{ for all } k$

We give the proof for $p < \infty$ and leave $p = \infty$ as an **Ex.** Proof:

$$(\Longrightarrow)$$
 Suppose first that $\|\mathbf{x}_n-\mathbf{x}\|_p
ightarrow 0$

Then, fixing any k in $1, \ldots, K$, we have

$$|\mathbf{e}'_k\mathbf{x}_n - \mathbf{e}'_k\mathbf{x}| = |x_n^k - x^k| \le \|\mathbf{x}_n - \mathbf{x}\|_p \to 0$$

Ex. Confirm the inequality in the last expression (\Leftarrow) Suppose instead that $|x_n^k - x^k| \rightarrow 0$ for all kThen $|x_n^k - x^k|^p \rightarrow 0$ for all k by continuity of $g(x) = x^p$

$$\therefore \quad z_n := |x_n^1 - x^1|^p + \dots + |x_n^K - x^K|^p \to 0$$
$$\therefore \quad \|\mathbf{x}_n - \mathbf{x}\|_p = z_n^{1/p} \to 0$$

(ロ)、(日)、(三)、(三)、(三)、(三)、(2),25

There is an important implication of this result

Fact. For any $p \in [1, \infty]$ and any sequence $\{\mathbf{x}_n\}$,

 $\mathbf{x}_n
ightarrow \mathbf{x}$ in *p*-norm $\iff \mathbf{x}_n
ightarrow \mathbf{x}$ in Euclidean norm

Proof: Fix $p \in [1, \infty]$ and sequence $\{\mathbf{x}_n\}$ We have

 $\mathbf{x}_n o \mathbf{x}$ in *p*-norm \iff every component sequence converges $\iff \mathbf{x}_n o \mathbf{x}$ in Euclidean norm

Here's a nice example of why p-norms are important

Fact. The conclusions of the Banach contraction mapping theorem continue to hold if T is a contraction with respect to any p-norm

Thus, if S is closed and there exists a $p \in [1,\infty]$ and $\beta < 1$ with

$$\|T\mathbf{x} - T\mathbf{y}\|_p \le \beta \|\mathbf{x} - \mathbf{y}\|_p$$

for all $\mathbf{x}, \mathbf{y} \in S$, then

- 1. T has a unique fixed point $\bar{\mathbf{x}} \in S$
- 2. $T^n \mathbf{x} \to \bar{\mathbf{x}}$ as $n \to \infty$ for any $\mathbf{x} \in S$

Implication: When we try to show the contraction property, we can pick the most convenient p to work with