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Application: A Planning Problem

A firm

• owns stock st of a natural resouce (e.g., oil)

• supplies qt at time t and gets current profit π(qt)

firm marketqt

π(qt)

• stock next period is st+1 = st − qt
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Suppose that t = 0, current stock is s0

Given supply sequence {qt}∞
t=0, net present value of profits flow is

NPV =
∞

∑
t=0

βtπ(qt) where β :=
1

1 + r

Assume the resource is nonrenewable, so

sequence {qt} feasible ⇐⇒
∞

∑
t=0

qt ≤ s0

Suppose that

• st and qt take integer values

• π(q) = qα for some α ∈ (0, 1)
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Figure : Present value of different {qt} sequences (α = 0.5, r = 0.05)
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Assume that the firm chooses {qt} to maximize NPV

Let v∗(s) be the NPV corresponding to

• current stock s0 equal to s

• an optimal supply sequence choice given s = s0

v∗(s) = sup

{
∞

∑
t=0

βtπ(qt) :
∞

∑
t=0

qt ≤ s

}

Thus v∗(s) is the “market value of the firm with current stock s”

How to compute v∗(s) for all s ≤ N =: some max level of stock?
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It turns out that v∗ satisfies the equation

v∗(s) = max
0≤q≤s

{π(q) + βv∗(s − q)} (s = 0, . . . , N)

Intuition: Max value attained if current q chosen to trade off

• current profits π(q)
• depletion of stock to s − q weighted by future value

Proof: Omitted — see Bellman’s principle of optimality

More intuition / examples of these kinds of recursions coming later

Remark: We’re restricting q to be an integer for simplicity
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Let v = (v(0), . . . , v(N)) be any vector in RN+1

Consider creating a new vector v̂ ∈ RN+1 from v via

v̂(s) = max
0≤q≤s

{π(q) + βv(s − q)} (s = 0, . . . , N)

• v̂(0) = max0≤q≤0{π(q) + βv(0 − q)} = π(0) + βv(0)

• v̂(1) = max0≤q≤1{π(q) + βv(1 − q)} = · · ·

• · · ·
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Figure : Creating v̂ from given v
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We’ve specified a rule that creates a new vector v̂ from any
existing vector v

We can think of this operation v 7→ v̂ as a mapping

Let T be the mapping defined in this way

That is, v̂ = Tv where

Tv(s) = max
0≤q≤s

{π(q) + βv(s − q)} (s = 0, 1, . . . , N)

T is a well-defined mapping from RN+1 → R
N+1
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Recall that

v∗(s) = max
0≤q≤s

{π(q) + βv∗(s − q)}

and that T : RN+1 → R
N+1 maps v to v̂ by

Tv(s) = max
0≤q≤s

{π(q) + βv(s − q)}

It follows that

Tv∗(s) = max
0≤q≤s

{π(q) + βv∗(s − q)} = v∗(s)

That is, Tv∗ = v∗

Thus, solving for v∗ is the same as finding a fixed point of T
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Claim: T is a contraction on RN+1 with p-norm ‖ · ‖∞

Proof: Pick any v, w in RN+1 and any s in 0, 1, . . . , N

By definition,

|Tv(s)− Tw(s)| =∣∣∣∣max
0≤q≤s

{π(q) + βv(s − q)} − max
0≤q≤s

{π(q) + βw(s − q)}
∣∣∣∣

Recall now the rule

| sup
x∈A

f (x)− sup
x∈A

g(x)| ≤ sup
x∈A

| f (x)− g(x)|
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Hence

|Tv(s)− Tw(s)| ≤ max
0≤q≤s

|π(q) + βv(s − q)− (π(q) + βw(s − q))|

= β max
0≤q≤s

|v(s − q)− w(s − q)|

≤ β max
0≤u≤N

|v(u)− w(u)|

= β‖v − w‖∞

Since the last term is an upper bound on |Tv(s)− Tw(s)|, we have

‖Tv − Tw‖∞ ≤ β‖v − w‖∞
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What we know so far

• T has a unique fixed point in RN+1

• that fixed point is v∗, the object we want to compute

• If v is any point in RN+1, then Tkv → v∗

So let’s pick v and iterate with T

In practice we

1. Iterate until ‖Tkv − Tk+1v‖∞ < ε := small error tolerance

2. Take the final Tkv as approximate solution for v∗
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Figure : The sequence v, Tv, T2v, . . . and limit



15/47

A Planning Problem Dynamics Graphical Analysis

0 10 N
0

2

4

6

8

10

12

14

16
initial vector

approx limit

Figure : Iterates with alternative initial condition
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Comparative Statics

Now we know how to compute a solution v∗ for each set of
parameters

Typical next step: look at the properties of the solution

Example. How is the value of the firm affected by r?

Intuitively, higher interest rate decreases net present value

Let’s

• compute approximate v∗ associated with different r

• see whether they do go down as r goes up
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Figure : The vector v∗ computed at different values of r



18/47

A Planning Problem Dynamics Graphical Analysis

New Topic

DYNAMICS
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Dynamics

Dynamics are essential to almost all areas of economics and finance

Why? Because the future matters for the present:

• Can’t price an asset today without considering what it could
be sold for tomorrow

• Can’t analyze viability of a pension system without
considering future time paths for income, savings, etc.

• Central banks can’t choose interest rates without considering
future inflation, unemployment and output
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Introductory Example: Solow–Swan

We start with a simple example: Solow–Swan growth

1. Agents save some of their current income

2. Those savings are used to increase capital stock

3. Capital is combined with labour to produce output

4. Output is income (divided out as wages, rent on capital)

5. Return to step 1

What happens to output / capital / etc. over time?
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In the model, output in each period is

Yt = F(Kt, Lt) (t = 0, 1, 2, . . .)

Here

• Kt = capital

• Lt = labor

• Yt = output

• F is the aggregate production function
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F assumed to be homogeneous of degree one (HD1), meaning

F(λK, λL) = λF(K, L) for all λ ≥ 0

Examples.

Cobb-Douglas:
F(K, L) = AKαL1−α

CES:
F(K, L) = γ{αKρ + (1 − α)Lρ}1/ρ
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Closed economy:

current domestic investment = aggregate domestic savings

The savings rate is a positive constant s, so

investment = savings = sYt = sF(Kt, Lt)

Depreciation means that 1 unit of capital today becomes 1 − δ
units next period

Thus, capital stock evolves according to

Kt+1 = sF(Kt, Lt) + (1 − δ)Kt
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We simplify Kt+1 = sF(Kt, Lt) + (1 − δ)Kt as follows

Assume that Lt = some constant L

Now set kt := Kt/L and use HD1 to get the per capita law of
motion

kt+1 = s
F(Kt, L)

L
+ (1 − δ)kt

= sF(kt, 1) + (1 − δ)kt

Setting f (k) := F(k, 1) to simplify notation, final expression is

kt+1 = s f (kt) + (1 − δ)kt
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In summary, we can write

kt+1 = g(kt) where g(k) := s f (k) + (1 − δ)k

This kind of equation is called a difference equation

In this case, scalar and nonlinear

Main question: what are the implied properties of {kt}?

More generally, given

• difference equation xt+1 = g(xt)

• initial condition x0,

what are the properties of {xt}?
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45 Degree Diagrams

A method for tracing out dynamics graphically

Useful for analyzing one dimensional dynamic systems

Equally helpful for both linear and nonlinear systems

Let’s look at some examples, starting with the difference equation

xt+1 = g(xt) when g(x) = 2 + 0.5x

We want to be able to take any x0 and map out the sequence

x0, x1 = g(x0), x2 = g(x1), . . .
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Figure : g(x) = 2 + 0.5x with x0 = 0.4
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Figure : g(x) = 2 + 0.5x with x0 = 1.5
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Figure : g(x) = 2 + 0.5x with x0 = 5.8
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Figure : g(x) = 1 + 1.2x with x0 = 0.4
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Figure : g(x) = 2.125/(1 + x−4) with x0 = 0.85
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Figure : g(x) = 2.125/(1 + x−4) with x0 = 1.1
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Let’s compare

• 45 degree diagrams

• corresponding time series plots
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Figure : g(x) = 2 + 0.5x with x0 = 0.4
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Figure : g(x) = 2 + 0.5x with x0 = 0.4
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Figure : g(x) = 1 + 1.2x with x0 = 0.4
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Figure : g(x) = 1 + 1.2x with x0 = 0.4
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Figure : g(x) = 2.125/(1 + x−4) and g(0) = 0 with x0 = 0.85
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Figure : g(x) = 2.125/(1 + x−4) and g(0) = 0 with x0 = 0.85
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Figure : g(x) = 2.125/(1 + x−4) and g(0) = 0 with x0 = 1.1
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Figure : g(x) = 2.125/(1 + x−4) and g(0) = 0 with x0 = 1.1
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Back to Solow-Swan

Let’s return to the model

kt+1 = g(kt) where g(k) := s f (k) + (1 − δ)k

Let’s assume that

• f (k) = Akα where A = 1 and α = 0.6
• s = 0.3 and δ = 0.1

The dynamics can be seen graphically
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Figure : Solow-Swan dynamics, low initial capital
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Figure : Solow-Swan dynamics, low initial capital



45/47

A Planning Problem Dynamics Graphical Analysis

0 k0k1k2k3 3
0

k0

k1

k2

k3

3

g 45

Figure : Solow-Swan dynamics, high initial capital
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Figure : Solow-Swan dynamics, high initial capital
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Graphical analysis of the model suggests that

• kt increases over time if k0 is small

• kt decreases over time if k0 is large

• kt converges to the same point regardless of k0

To go further with our analysis we need some definitions and
results...
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