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Formal Concepts and Definitions

Formalization — what’s a difference equation?

A dynamical system is a pair (S, g), where

1. S is a nonempty subset of RK

2. g is a function mapping S into itself (a self-mapping on S)

These objects are used to represent the difference equation

xt+1 = g(xt) where g : S → S

The set S is called the state space

The function g is called the transition rule or law of motion



3/46

The Basic Model Steady States Local Stability Global Stability Periodic Points Complex Dynamics

Example. Let g(k) = sAkα + (1 − δ)k with

• A > 0

• 0 < s, α, δ < 1

The pair ([0, ∞), g) is a dynamical system

The pair ((0, ∞), g) is a dynamical system

Example. Let g : x 7→ 2x

The pair ([0, 1], g) is not a dynamical system

For example, g(1) = 2 /∈ [0, 1]

(Hence g is not a self-mapping on [0, 1])
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Let (S, g) be a dynamical system and consider the sequence
generated recursively by

xt+1 = g(xt), where x0 = some given point in S

Not that for this sequence we have

x2 = g(x1) = g(g(x0)) =: g2(x0)

and, more generally,

xt = gt(x0) where gt = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
t compositions of g

The sequence {gt(x0)}t≥0 is called the trajectory of x0 ∈ S

We will also call it a time series
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Figure : The trajectory of x under g
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Fact. If g is increasing on S and S ⊂ R, then every trajectory is
monotone (either increasing or decreasing)

Proof: Pick any x ∈ S

Either x ≤ g(x) or g(x) ≤ x — let’s treat the first case

Since g is increasing and x ≤ g(x) we have g(x) ≤ g2(x)

Putting these inequalities together gives

x ≤ g(x) ≤ g2(x)

Continuing in this way gives

x ≤ g(x) ≤ g2(x) ≤ g3(x) ≤ · · ·
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Steady States

Let (S, g) be a dynamical system

Suppose that x∗ is a fixed point of g, so that

g(x∗) = x∗

Then, for any trajectory {xt} generated by g,

xt = x∗ =⇒ xt+1 = g(xt) = g(x∗) = x∗

In other words, if we ever get to x∗ we stay there

As a result, in this context, a fixed point of g in S is also called a
steady state

• Just a fixed point, not a new concept mathematically
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Figure : Steady states of g(x) = 2.125/(1 + x−4) and g(0) = 0
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Example. Recall the Solow-Swan growth model

kt+1 = g(kt) where g(k) := sAkα + (1 − δ)k

Assume that

1. S = (0, ∞)

2. A > 0 and 0 < s, α, δ < 1

The system (S, g) has a steady state given by the solution to

k = sAkα + (1 − δ)k

Ex. Solve this equation for k to get steady state

k∗ :=
(

sA
δ

)1/(1−α)
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Figure : Steady state of the Solow model



11/46

The Basic Model Steady States Local Stability Global Stability Periodic Points Complex Dynamics

Example. Let’s modify the Solow-Swan model to

kt+1 = g(kt) where g(k) = sA(k)kα + (1 − δ)k

In the Azariadis-Drazen growth model A takes the form

A(k) =

{
A1 if 0 < k < kb

A2 if kb ≤ k < ∞

The value kb is a “threshold” value of capital stock

• Assume 0 < A1 < A2, so more productive above kb

• As usual, 0 < s, α, δ < 1
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This is a dynamical system with

• S = (0, ∞)

• g(k) = sA(k)kα + (1 − δ)k

Let

k∗i :=
(

sAi

δ

)1/(1−α)

for i = 1, 2

Suppose that k∗1 < kb < k∗2

Ex. Show that (S, g) has two steady states, given by k∗1 and k∗2
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k∗1

k∗2

g(k) = sA(k)kα + (1− δ)k

Figure : The threshold model when k∗1 < kb < k∗2
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Stability: Intuition

In some settings trajectories converge

Example. Graphical analysis suggests all trajectories converge for
the Solow-Swan model (see above)

Let’s look at some more pictures illustrating stability

We focus on the system (S, g) where S = [0, 2] and

g(x) =

{
2.125/(1 + x−4) if x > 0
0 otherwise
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Figure : Steady states of g(x) = 2.125/(1 + x−4) and g(0) = 0
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These steady states appear to have different stability properties

1. x` is “locally stable”
• nearby points converge to it

2. xm is “unstable”
• nearby points diverge from it

3. xh is “locally stable”
• nearby points converge to it

The “basin of attraction” for

• x` is [x`, xm)

• xh is (xm, xh]
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Figure : Basin of attraction for x`
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Figure : Basin of attraction for xh



19/46

The Basic Model Steady States Local Stability Global Stability Periodic Points Complex Dynamics

Let’s try to formalize these ideas...
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Local Stability

Let x∗ be a steady state of (S, g)

The stable set of x∗ is

O(x∗) := {x ∈ S : gt(x) → x∗ as t → ∞}

This set is nonempty (why?)

The steady state x∗ called locally stable or an attractor if there
exists an ε > 0 such that

x ∈ S and ‖x − x∗‖ < ε =⇒ x ∈ O(x∗)
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Figure : A poverty trap in the Azariadis–Drazen threshold model
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Figure : A poverty trap in the Azariadis–Drazen threshold model



23/46

The Basic Model Steady States Local Stability Global Stability Periodic Points Complex Dynamics

0 k0 48.125
0

k0

48.125

g 45

Figure : The higher steady state is also an attractor
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Let S ⊂ R and let x∗ ∈ S be a steady state of (S, g)

Fact. If g is continuously differentiable at x∗ and |g′(x∗)| < 1,
then x∗ is locally stable for (S, g)

Proof (omitted) shows that g is “locally a contraction” near x∗

under this condition

Ex. Recall the Azariadis-Drazen growth model with steady states

k∗i :=
(

sAi

δ

)1/(1−α)

for i = 1, 2

Under the assumptions given above, show that k∗1 and k∗2 are both
locally stable
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Global Stability

Dynamical system (S, g) is called globally stable if

1. g has a fixed point x∗ in S

2. x∗ is the only fixed point of g in S

3. gt(x) → x∗ as t → ∞ for all x ∈ S

Example. If g is a contraction mapping and S closed then (S, g)
globally stable
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Figure : Visualizing global stability in R2
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Example. Recall the Solow-Swan growth model where

kt+1 = g(kt) for g(k) = sAkα + (1 − δ)k

with

1. S = (0, ∞)

2. A > 0 and 0 < s, α, δ < 1

The system (S, g) is globally stable with unique fixed point

k∗ :=
(

sA
δ

)1/(1−α)
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Proof: Simple algebra shows that for k > 0 we have

k = sAkα + (1 − δ)k ⇐⇒ k =

(
sA
δ

)1/(1−α)

Hence (S, g) has unique steady state k∗

It remains to show that gt(k) → k∗ for every k ∈ S := (0, ∞)

Let’s show this for any k ≤ k∗, leaving k∗ ≤ k as an exercise

Since calculating gt(k) directly is messy, let’s try another strategy
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Claim: If 0 < k ≤ k∗, then {gt(k)} is increasing and bounded

Proof increasing: Since g increasing {gt(k)} is monotone

From k ≤ k∗ and some algebra (exercise) we get

k ≤
(

sA
δ

)1/(1−α)

=⇒ g(k) ≥ k =⇒ {gt(k)} increasing

Proof bounded: From k ≤ k∗ and the fact that g is increasing,

g(k) ≤ g(k∗) = k∗

Applying g to both sides gives g2(k) ≤ k∗ and so on

Hence both bounded and increasing
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To complete the proof we use the following fact

Fact. If gt(k) → k̂ for some k, k̂ ∈ S and g is continuous at k̂,
then k̂ is a fixed point of g

Now fix k ≤ k∗ and recall that {gt(k)} is bounded, increasing

Hence gt(k) → k̂ for some k̂ ∈ S

Because g is continuous, we know that k̂ is a fixed point

But k∗ is the only fixed point of k = g(k) as discussed above

Hence k̂ = k∗

In other words, gt(k) → k∗ as claimed
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Example. Consider again the Solow-Swan growth model

kt+1 = g(kt) for g(k) := sAkα + (1 − δ)k

where parameters are as before

If S = [0, ∞) then the same model (S, g) is not globally stable

• We showed above that g has a fixed point k∗ in (0, ∞)

• However, 0 is also a fixed point of g on [0, ∞)

• Hence (S, g) has two steady states in S = [0, ∞)

Moral: The state space matters for dynamic properties
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Periodic Points and Cycles

If x∗ is a steady state of (S, g) then

gk(x∗) = x∗ for all k ∈ N

However, some (S, g) have points x∗ such that

gk(x∗) = x∗ for some but not all k ∈ N

g(x∗)x∗ = g2(x∗)

Figure : Here g(x∗) 6= x∗ but g2(x∗) = x∗
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A point x∗ ∈ S is called periodic for dynamical system (S, g) if

gk(x∗) = x∗ for some k ∈ N

Example. Every steady state of (S, g) is periodic (set k = 1)

Example. If S = R and g(x) = −x then 1 is periodic because

g2(1) = g(g(1)) = −(−1) = 1

The period of x∗ is the smallest k ∈ N such that gk(x∗) = x∗

Example. In the previous example, 1 has period 2
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Example. Let S = [0, 1] and let g be the logistic map

g(x) = 3.5x(1 − x)

The second composition g2 has the form

g2(x) = 3.5g(x)(1 − g(x))

= 3.52x(1 − x)(1 − 3.5x(1 − x))

It has two fixed points that are not fixed points of g

These points are periodic with period 2
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Figure : Logistic map g(x) = 3.5x(1 − x) and second iterate g2
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Figure : Time series of logistic map g(x) = 3.5x(1 − x)
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Chaotic Dynamics

Some simple systems generate complicated time series

Classic example is (some of) the logistic maps

These are systems of the form (S, g) where S := [0, 1] and

g(x) = rx(1 − x), r ∈ [0, 4] (1)

Arise mainly in biological models

Let’s consider the case r = 4

Then almost all starting points generate “complicated” trajectories
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Figure : Logistic map g(x) = 4x(1 − x) with x0 = 0.3
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Figure : The corresponding time series
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Figure : A longer time series
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Figure : A long time series, histogram of values
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How does the logisitic map behave when we let the multiplicative
parameter take values other than 4?

Consider the more general map

h(x) = rx(1 − x), 0 ≤ r ≤ 4
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Figure : Logistic maps, r ∈ [0, 4]
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For some values of r this system is globally stable and for others,
like 4, the behavior is highly complex.

Next slide shows a “bifurcation diagram” which helps to
understand long-run behavior at each r.
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Figure : Bufircation Diagram
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Incidentally, what’s the difference between “chaotic” and
“random” sequences

According to A.N. Kolmogorov, the difference is in degree to which
they can be compressed

Degree of compression means shortest “program” that generates
them

A chaotic sequence can be compressed without loss of information

The information in {xt} is summarized in g and x0

A truely random sequence {zt} cannot be reduced to an algorithm
in the same way

To store the information in {zt} we need to store the sequence
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