ECON2125/4021/8013
 Lecture 23

John Stachurski

Semester 1, 2015

Announcements

SELT feedback is live

- Criticism is welcome - constructive preferred

More solved practice questions coming next week

Linear Models

When studying economic systems we often use linear models

- more correctly, affine models - see below

The advantage of linear systems

- Simple dynamics

The disadvantage of linear systems

- Simple dynamics

Ideal if they can replicate the phenomenon you wish to study
Often used as a building block for more complex models

A generic (deterministic) linear model on \mathbb{R}^{N} takes the form

$$
\mathbf{x}_{t+1}=\mathbf{A} \mathbf{x}_{t}+\mathbf{b}
$$

where

- \mathbf{x}_{t} is $N \times 1$, a vector of "state" variables
- \mathbf{A} is $N \times N, \mathbf{b}$ is $N \times 1$, contain parameters
- A dynamical system $\left(\mathbb{R}^{N}, g\right)$ with $g(\mathbf{x})=\mathbf{A x}+\mathbf{b}$
- Despite the terminology, g is actually affine

When $N=1$ this becomes

$$
x_{t+1}=a x_{t}+b
$$

Example. A simple linear macroeconomic model might look like

$$
\begin{aligned}
\pi_{t+1} & =a_{11} \pi_{t}+a_{12} i_{t}+a_{13} y_{t}+b_{1} \\
i_{t+1} & =a_{21} \pi_{t}+a_{22} i_{t}+a_{23} y_{t}+b_{2} \\
y_{t+1} & =a_{31} \pi_{t}+a_{32} i_{t}+a_{33} y_{t}+b_{3}
\end{aligned}
$$

where

- π is inflation
- i is the interest rate
- y is an "output gap"

In general we know that for any (S, g) we have $\mathbf{x}_{t}=g^{t}\left(\mathbf{x}_{0}\right)$

For linear systems we can write this out explicitly:

$$
\begin{aligned}
\mathbf{x}_{t} & =\mathbf{A} \mathbf{x}_{t-1}+\mathbf{b} \\
& =\mathbf{A}\left(\mathbf{A} \mathbf{x}_{t-2}+\mathbf{b}\right)+\mathbf{b} \\
& =\mathbf{A}^{2} \mathbf{x}_{t-2}+\mathbf{A} \mathbf{b}+\mathbf{b} \\
& =\mathbf{A}^{2}\left(\mathbf{A} \mathbf{x}_{t-3}+\mathbf{b}\right)+\mathbf{A b}+\mathbf{b} \\
& =\mathbf{A}^{3} \mathbf{x}_{t-3}+\mathbf{A}^{2} \mathbf{b}+\mathbf{A} \mathbf{b}+\mathbf{b} \\
& =\cdots
\end{aligned}
$$

More generally,

$$
\mathbf{x}_{t}=\mathbf{A}^{j} \mathbf{x}_{t-j}+\mathbf{A}^{j-1} \mathbf{b}+\mathbf{A}^{j-2} \mathbf{b}+\cdots+\mathbf{A} \mathbf{b}+\mathbf{b}
$$

Setting $j=t$

$$
\mathbf{x}_{t}=\mathbf{A}^{t} \mathbf{x}_{0}+\mathbf{A}^{t-1} \mathbf{b}+\mathbf{A}^{t-2} \mathbf{b}+\cdots+\mathbf{A} \mathbf{b}+\mathbf{b}
$$

In short,

$$
g^{t}\left(\mathbf{x}_{0}\right)=\mathbf{A}^{t} \mathbf{x}_{0}+\sum_{i=0}^{t-1} \mathbf{A}^{i} \mathbf{b}
$$

In the scalar case this is

$$
g^{t}\left(x_{0}\right)=a^{t} x_{0}+b \sum_{i=0}^{t-1} a^{i}
$$

Stability of Linear Models

Let's consider existence / uniqueness / stability of steady states of linear systems

In particular we study properties of the dynamical system $\left(\mathbb{R}^{N}, g\right)$ with

$$
g(\mathbf{x})=\mathbf{A x}+\mathbf{b}
$$

Even existence of a steady state is not guaranteed - consider

$$
x_{t+1}=x_{t}+1
$$

It turns out that existence / uniqueness / stability etc. all depend on the spectral radius of \mathbf{A}

Fact. If $\rho(\mathbf{A})<1$, then $\left(\mathbb{R}^{N}, g\right)$ is globally stable, with unique steady state

$$
\mathbf{x}^{*}=\sum_{i=0}^{\infty} \mathbf{A}^{i} \mathbf{b}
$$

Proof: A steady state is a solution to $\mathbf{x}=\mathbf{A x}+\mathbf{b}$, or

$$
(\mathbf{I}-\mathbf{A}) \mathbf{x}=\mathbf{b}
$$

Recall that $\rho(\mathbf{A})<1$ implies $\left\|\mathbf{A}^{k}\right\|<1$ for some $k \in \mathbb{N}$
By the Neumann series lemma, (\star) has the unique solution

$$
(\mathbf{I}-\mathbf{A})^{-1} \mathbf{b}=\sum_{i=0}^{\infty} \mathbf{A}^{i} \mathbf{b}
$$

It remains to show that

$$
\mathbf{x}_{t}=\mathbf{A}^{t} \mathbf{x}_{0}+\sum_{i=0}^{t-1} \mathbf{A}^{i} \mathbf{b} \rightarrow \sum_{i=0}^{\infty} \mathbf{A}^{i} \mathbf{b}=: \mathbf{x}^{*}
$$

By definition, we have $\sum_{i=0}^{t-1} \mathbf{A}^{i} \mathbf{b} \rightarrow \sum_{i=0}^{\infty} \mathbf{A}^{i} \mathbf{b}=\mathbf{x}^{*}$
Hence if $\mathbf{A}^{t} \mathbf{x}_{0} \rightarrow \mathbf{0}$, then

$$
\mathbf{x}_{t}=\mathbf{A}^{t} \mathbf{x}_{0}+\sum_{i=0}^{t-1} \mathbf{A}^{i} \mathbf{b} \rightarrow \mathbf{0}+\mathbf{x}^{*}=\mathbf{x}^{*}
$$

To see that $\mathbf{A}^{t} \mathbf{x}_{0} \rightarrow \mathbf{0}$, note (see the rules for matrix norms) that

$$
\left\|\mathbf{A}^{t} \mathbf{x}_{0}-\mathbf{0}\right\|=\left\|\mathbf{A}^{t} \mathbf{x}_{0}\right\| \leq\left\|\mathbf{A}^{t}\right\|\left\|\mathbf{x}_{0}\right\| \rightarrow 0
$$

How exactly do we show that $\left\|\mathbf{A}^{t}\right\|\left\|\mathbf{x}_{0}\right\| \rightarrow 0$ as $t \rightarrow \infty$?
Since $\rho(\mathbf{A})<1$, there exists a $k \in \mathbb{N}$ with $\left\|\mathbf{A}^{k}\right\|<1$
For any t we can write $t=n k+j$ for some $j \in\{0, \ldots, k-1\}$
Using the submultiplicative property of the matrix norm, we have

$$
\left\|\mathbf{A}^{t}\right\|=\left\|\mathbf{A}^{n k+j}\right\|=\left\|\mathbf{A}^{n k} \mathbf{A}^{j}\right\| \leq\left\|\mathbf{A}^{n k}\right\|\left\|\mathbf{A}^{j}\right\|
$$

Let $L:=\max _{0 \leq j \leq k-1}\left\|\mathbf{A}^{j}\right\|$
We then have

$$
\left\|\mathbf{A}^{t}\right\| \leq L\left\|\mathbf{A}^{n k}\right\| \leq L\left\|\mathbf{A}^{k}\right\|^{n}
$$

Now observe that $t \rightarrow \infty$ means $n \rightarrow \infty$, and $\left\|\mathbf{A}^{k}\right\|<1$

There's another way we can show $\mathbf{A}^{t} \mathbf{x}_{0} \rightarrow \mathbf{0}$ if \mathbf{A} is diagonalizable Recall this means that we can write $\mathbf{A}=\mathbf{P D P}^{-1}$ where

$$
\mathbf{D}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right), \quad \lambda_{n}=n \text {-th eigenvalue of } \mathbf{A}
$$

Recall further that $\mathbf{A}^{t}=\mathbf{P D}^{t} \mathbf{P}^{-1}$
That is,

$$
\mathbf{A}^{t}=\mathbf{P}\left(\begin{array}{cccc}
\lambda_{1}^{t} & 0 & \cdots & 0 \\
0 & \lambda_{2}^{t} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \lambda_{N}^{t}
\end{array}\right) \mathbf{P}^{-1}
$$

Since $\rho(\mathbf{A})<1$ we have $\left|\lambda_{n}\right|<1$ for all n
Hence $\mathbf{A}^{t} \rightarrow \mathbf{0}$

Example. Let

$$
\mathbf{A}=\left(\begin{array}{cc}
0.6 & -0.7 \\
0.6 & 0.65
\end{array}\right) \quad \mathbf{b}=\binom{0}{0}
$$

In [1]: import numpy as np
In [2]: from scipy.linalg import eig
In [3]: A = np.asarray([[0.6, -0.7], [0.6, 0.65]])
In [4]: evals, evecs = eig(A)
In [5]: evals
Out [5]: array([0.625+0.64759169j, 0.625-0.64759169j])
In [6]: np.abs(evals)
Out[6]: array([0.9, 0.9]) \# Implies globally stable

Figure: Convergence towards the origin for $\mathbf{x}_{t+1}=\mathbf{A} \mathbf{x}_{t}$

Stochastic Dynamics

Now it's time to add shocks to our model
As discussed earlier, the data in econ / finance tends to be "noisy" relative to models

- humans are hard to model...

Thus, adding shocks / noise to our models brings them closer to the data

- Prepares us to estimate our models
- Allows us to include patterns observed in the noise

Martingales

Stochastic models are often pieced together from simpler random components, such as IID sequences

Another such building block is martingales
A sequence of random vectors $\left\{\mathbf{w}_{t}\right\}_{t=1}^{\infty}$ is called a martingale if,

$$
\forall t \geq 1, \quad \mathbb{E}\left[\mathbf{w}_{t+1} \mid \mathbf{w}_{t}, \mathbf{w}_{t-1}, \ldots, \mathbf{w}_{1}\right]=\mathbf{w}_{t}
$$

For the rest of this lecture we use the abbreviated notation

$$
\mathbb{E}_{t}[\cdot]:=\mathbb{E}\left[\cdot \mid \mathbf{w}_{t}, \mathbf{w}_{t-1}, \ldots, \mathbf{w}_{1}\right]
$$

so that the definition of a martingale becomes

$$
\mathbb{E}_{t}\left[\mathbf{w}_{t+1}\right]=\mathbf{w}_{t} \quad \text { for all } t
$$

Example. A player's wealth over a sequence of fair gambles follows a martingale

In particular, let w_{t} be wealth at time t, where

$$
w_{t}=\sum_{i=1}^{t} \xi_{i,} \quad\left\{\xi_{t}\right\} \text { is IID with } \mathbb{E}\left[\xi_{t}\right]=0, \forall t
$$

Then

$$
\mathbb{E}_{t}\left[w_{t+1}\right]=\mathbb{E}_{t}\left[w_{t}+\xi_{t+1}\right]=\mathbb{E}_{t}\left[w_{t}\right]+\mathbb{E}_{t}\left[\xi_{t+1}\right]
$$

The martingale property now follows:

- $\mathbb{E}_{t}\left[w_{t}\right]=w_{t}$ because w_{t} is known at t
- $\mathbb{E}_{t}\left[\xi_{t+1}\right]=\mathbb{E}\left[\xi_{t+1}\right]=0$ by independence, zero mean of ξ_{t+1}

A sequence $\left\{\mathbf{w}_{t}\right\}_{t=1}^{\infty}$ is called a martingale difference sequence (MDS) if

$$
\mathbb{E}_{t}\left[\mathbf{w}_{t+1}\right]=\mathbf{0}
$$

for all t

Example. If $\left\{\mathbf{v}_{t}\right\}$ is a martingale then the first difference

$$
\mathbf{w}_{t}:=\mathbf{v}_{t}-\mathbf{v}_{t-1}
$$

is a MDS because, for any t,

$$
\begin{aligned}
\mathbb{E}_{t}\left[\mathbf{w}_{t+1}\right] & =\mathbb{E}_{t}\left[\mathbf{v}_{t+1}-\mathbf{v}_{t}\right] \\
& =\mathbb{E}_{t}\left[\mathbf{v}_{t+1}\right]-\mathbb{E}_{t}\left[\mathbf{v}_{t}\right]=\mathbf{v}_{t}-\mathbf{v}_{t}=\mathbf{0}
\end{aligned}
$$

Example. Suppose that $\left\{\mathbf{w}_{t}\right\}$ is IID with $\mathbb{E}\left[\mathbf{w}_{t}\right]=\mathbf{0}$
Then $\left\{\mathbf{w}_{t}\right\}$ is an MDS
To see this observe that, by independence,

$$
\mathbb{E}_{t}\left[\mathbf{w}_{t+1}\right]=\mathbb{E}\left[\mathbf{w}_{t+1}\right] \quad \text { for all } t
$$

The conclusion follows

In fact a MDS is a generalization of the idea of a zero mean IID sequence

Often used in economics / finance / econometrics

- Nicely represents the idea of "unpredictable" sequence
- A more natural assumption than independence...?

Fact. If $\left\{\mathbf{w}_{t}\right\}$ is a MDS, then $\mathbb{E}\left[\mathbf{w}_{t}\right]=\mathbf{0}$ for all t

Proof: By the law of iterated expectations,

$$
\mathbb{E}\left[\mathbf{w}_{t}\right]=\mathbb{E}\left[\mathbb{E}_{t-1}\left[\mathbf{w}_{t}\right]\right]=\mathbb{E}[\mathbf{0}]=\mathbf{0}
$$

Fact. If $\left\{\mathbf{w}_{t}\right\}$ is a martingale difference sequence, then

$$
\mathbb{E}\left[\mathbf{w}_{s} \mathbf{w}_{t}^{\prime}\right]=\mathbf{0} \quad \text { whenever } \quad s \neq t
$$

We say that \mathbf{w}_{s} and \mathbf{w}_{t} are orthogonal

Proof: Supposing without loss of generality that $s<t$, we have

$$
\mathbb{E}\left[\mathbf{w}_{s} \mathbf{w}_{t}^{\prime}\right]=\mathbb{E}\left[\mathbb{E}_{t-1}\left[\mathbf{w}_{s} \mathbf{w}_{t}^{\prime}\right]\right]=\mathbb{E}\left[\mathbf{w}_{s} \mathbb{E}_{t-1}\left[\mathbf{w}_{t}^{\prime}\right]\right]=\mathbb{E}[\mathbf{0}]=\mathbf{0}
$$

As an aside the term "orthogonal" is often used to indicate lack of correlation

To see the connection, let's suppose that $\left\{w_{t}\right\}$ is a scalar MDS
We know from the previous slide that

- $\mathbb{E}\left[w_{t}\right]=0$ and
- $\mathbb{E}\left[w_{s} w_{t}\right]=0$ when $s \neq t$ (orthogonality)

It follows that

$$
\operatorname{cov}\left[w_{s}, w_{t}\right]=\mathbb{E}\left[\left(w_{s}-\mathbb{E}\left[w_{s}\right]\right)\left(w_{t}-\mathbb{E}\left[w_{t}\right]\right)\right]=\mathbb{E}\left[w_{s} w_{t}\right]=0
$$

Hence orthogonal \Longrightarrow zero correlation

Now consider the linear stochastic difference equation

$$
\mathbf{x}_{t+1}=\mathbf{A} \mathbf{x}_{t}+\mathbf{b}+\mathbf{C} \mathbf{w}_{t+1}
$$

We assume that

1. \mathbf{A} is $N \times N$ and \mathbf{b} is $N \times 1$
2. $\left\{\mathbf{w}_{t}\right\}$ is $M \times 1$, an MDS with $\mathbb{E}_{t}\left[\mathbf{w}_{t+1} \mathbf{w}_{t+1}^{\prime}\right]=\mathbf{I}$ for all t
3. \mathbf{C} is an $N \times M$ matrix called the volatility matrix
4. \mathbf{x}_{0} is given

Note: 2 implies that $\mathbb{E}\left[\mathbf{w}_{t} \mathbf{w}_{t}^{\prime}\right]=\mathbf{I}$ for any t because, by the law of iterated expectations,

$$
\mathbb{E}\left[\mathbf{w}_{t} \mathbf{w}_{t}^{\prime}\right]=\mathbb{E}\left[\mathbb{E}_{t-1}\left[\mathbf{w}_{t} \mathbf{w}_{t}^{\prime}\right]\right]=\mathbb{E}[\mathbf{I}]=\mathbf{I}
$$

Example. A simple linear macroeconomic model might look like

$$
\begin{aligned}
\pi_{t+1} & =a_{11} \pi_{t}+a_{12} i_{t}+a_{13} y_{t}+b_{1}+c_{1} u_{t+1} \\
i_{t+1} & =a_{21} \pi_{t}+a_{22} i_{t}+a_{23} y_{t}+b_{2}+c_{2} v_{t+1} \\
y_{t+1} & =a_{31} \pi_{t}+a_{32} i_{t}+a_{33} y_{t}+b_{3}+c_{3} w_{t+1}
\end{aligned}
$$

where

- π is inflation
- i is the interest rate
- y is an "output gap"
- u, v and w are shocks

Scalar Models

If we specialize to $N=1$ then we get the scalar model

$$
\begin{equation*}
x_{t+1}=a x_{t}+b+c w_{t+1} \tag{1}
\end{equation*}
$$

Let's look at some time series simulated on a computer
In each case we

1. assume that $\left\{w_{t}\right\} \stackrel{\text { IID }}{\sim} N(0,1)$
2. draw $\left\{w_{1}, \ldots, w_{T}\right\}$ using a random number generator
3. fix $x_{0}=1$
4. update x_{t} via (1) until $t=T$
```
import numpy as np
import matplotlib.pyplot as plt
T = 100 # Length of time series
a = 0.5 # Parameter
c = 1 # Parameter
b = 0 # Parameter
w = np.random.randn(T) # T indep. standard normals
x = np.empty(T) # Allocate memory
x[0] = 1 # Initial condition
for t in range(T-1):
    x[t+1] = a * x[t] + b + c * w[t+1]
plt.plot(x)
plt.show()
```


Figure: Linear Gaussian time series, $x_{0}=1, a=0.5, b=0, c=1$

Figure : A longer time series, same parameters

Remarks:
The time series $\left\{x_{t}\right\}$ does not converge to a constant

- $x_{t+1}=a x_{t}+b+c w_{t+1}$
- since $c \neq 0$, each x_{t} is disturbed by a shock

Neither does it diverge to $+\infty$ or $-\infty$

- in this case $|a|<1$, which leads to a kind of stability

We investigate these ideas in detail through the lecture

For starters let's see what happens when c gets small

Figure : $x_{0}=1, a=0.5, b=0, c=0.8$

Figure : $x_{0}=1, a=0.5, b=0, c=0.4$

Figure : $x_{0}=1, a=0.5, b=0, c=0.1$

Summary: Lower c means less volatility in the time series

- Hence c is often called the "volatility parameter"

Intuition: As c gets small, the model

$$
x_{t+1}=a x_{t}+b+c w_{t+1}
$$

becomes "more similar" to

$$
x_{t+1}=a x_{t}+b
$$

In the latter case, when $|a|<1$, this series converges

What about if $|a|<1$ does not hold?

In this case the time series tends to diverge

A property of some time series

- population (sometimes)
- GDP in developed countries
- value of a portfolio with compounded interest
- inflation during a hyperinflation

Figure : $x_{0}=1, a=1.1, b=0, c=0.1$

Figure: For comparison: US GDP per capita
\qquad
\square

For other kinds of time series, no divergence is observed
The assumption $|a|<1$ is more reasonable

- returns on assets / portfolios
- GDP growth
- interest, inflation, unemployment rates

This is the "stationary" case

- terminology defined more formally later

Figure : Growth rates are often stationary

Consider again the stationary case $|a|<1$
The particular value a is still important as it governs the level of persistence

In the extreme case where $a=0$, the $\left\{x_{t}\right\}$ process is IID

$$
\begin{aligned}
& x_{t+1}= a x_{t}+b+c w_{t+1}=b+c w_{t+1} \\
& \therefore \quad\left\{x_{t}\right\} \stackrel{\text { IID }}{\sim} N\left(b, c^{2}\right)
\end{aligned}
$$

On the other hand, as $|a|$ gets close to 1 , we see

- strong persistence / correlation
- long deviations from "average" values

Figure : $x_{0}=1, a=0.95, b=0, c=0.5$

Figure : The same model but with $a=0.75$

