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Today’s Lecture

An application of stochastic dynamics: Asset pricing

Moving average representations

Dynamics of stochastic systems

• Dynamics of moments

• Convergence of moments

• Dynamics of distributions, etc.

We start with some preliminaries
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Preliminary 1: Expectation and Trace

In our application, we’ll make use of the following result

Fact. If w is a random vector with E [ww′] = I and Q is any
conformable matrix, then

E [w′Qw] = trace(Q)

Proof: Let qij be the i, j-th element of Q

Note that

w =

w1
...

wN

 =⇒ ww′ =

w1w1 · · · w1wN
...

wNw1 · · · wNwN
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Hence

E [ww′] = I =⇒ E [wiwj] =

{
1 if i = j
0 otherwise

Now recall that

w′Qw =
N

∑
j=1

N

∑
i=1

qijwiwj

So, by linearity of expectations,

E [w′Qw] =
N

∑
j=1

N

∑
i=1

qijE [wiwj]

The result now follows
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Preliminary 2: Lyapunov Equations

So far we’ve considered equations that have vectors as solutions

Sometimes we face equations that have matrices as solutions

An example is the discrete Lyapunov equation

P = A′PA + Q (1)

Here

• all matrices are N × N
• A and Q are given

• P is the unknown

The question is, when does there exist a unique P that solves (1)?
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Fact. Let Q and A be N × N. If, in addition,

1. Q is symmetric

2. ρ(A) < 1

then there exists a unique P that solves P = A′PA + Q

If Q is positive definite, then so is the solution P

Sketch of proof:

We studied the Banach contraction mapping theorem for vectors

Similar ideas carry through to matrices

Assumption ρ(A) < 1 is used to obtain the contraction property
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Application: Asset Pricing

Let’s consider the problem of pricing an asset

• a house

• a firm

• a share in a firm, etc.

From a modeling perspective, an asset is a claim to a stream of
payments, such as dividends

• a random sequence {dt}∞
t=1

Our question:

What to pay at t for a claim to the dividend stream dt+1, dt+2, . . .?
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To answer this we need to take a stand on how dividends evolve

Let’s assume that

1. dt = x′tDxt for some positive definite D

2. xt+1 = Axt + Cwt+1 for all t

Assumptions as before, including

• {wt} is an MDS

• E t[wt+1w′
t+1] = I for all t

Here xt is a vector of random factors believed to affect dividends

• Investment growth in China? Price of oil?
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Notice the functional form in

dt = x′tDxt

Why are we assuming that dt is quadratic in the factors xt?

The short answer is simplicity

• we can still hope to find prices using algebra

So, if we want simplicity, why not assume that dt is linear in xt?

This is simpler but too unrealistic

• e.g., can get negative dividends

Quadratic (with pos. definite D) balances simplicity and realism
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Risk Neutral Pricing

We are going to price the asset with “risk neutral” pricing

In our setting, this says that the price should satisfy

pt = βE t[dt+1] + βE t pt+1

for all t, where

• pk is price at time k

• β ∈ (0, 1) discounts next period values to current

• E t is the expectation given time t information

Note: This is a recursive representation of prices

We still have to work out pt in terms of primitives
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Predicting Quadratic Functions

One thing we need to do is predict future dividends

We want to predict from current information, so let’s use E t

Let’s start by predicting x′t+1Hxt+1 for arbitrary H

We have

E t[x′t+1Hxt+1] = E t[(Axt + Cwt+1)
′H(Axt + Cwt+1)]

Ex. Expand the right hand side out to get

E t[x′tA
′HAxt] + 2E t[x′tA

′HCwt+1] +E t[w′
t+1C′HCwt+1]

Hint: A scalar valued expression is equal to its transpose
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So consider the expression

E t[x′tA
′HAxt] + 2E t[x′tA

′HCwt+1] +E t[w′
t+1C′HCwt+1]

Regarding the first term, since xt is known at t we have

E t[x′tA
′HAxt] = x′tA

′HAxt

Regarding the second, since {wt} is an MDS,

2E t[x′tA
′HCwt+1] = 2x′tA

′HCE t[wt+1] = 0

Regarding the third, we can use our result from the start of the
lecture to get

E t[w′
t+1C′HCwt+1] = trace(C′HC)
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Predicting Dividends

Combining these results gives our final expression

E t[x′t+1Hxt+1] = x′tA
′HAxt + trace(C′HC)

Applying this to prediction of dividends gives

E t[dt+1] = x′tA
′DAxt + trace(C′DC)

Comments

• Our time t prediction of dt+1 is a function of xt

• The same can be shown for predictions of any dt+j



14/43

Application: Asset Pricing Moving Averages Moments Distributions

Prices as Functions of the State

We’ve seen that all information useful for predicting future
dividends is contained in xt

This leads us to conjecture that pt should be a function of xt

• Prices are functions of data useful for predicting dividends

We’re going to make another leap and guess that prices are a
quadratic in xt

In particular, we guess that the solution pt takes the form

pt = x′tVxt + δ

for some positive definite V and scalar δ
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The plan: See if there exist V and δ such that

pt = x′tVxt + δ (2)

satisfies the risk neutral pricing equation

pt = βE t[dt+1] + βE t pt+1

Substituting (2) into both sides gives

x′tVxt + δ = βE t[x′t+1Dxt+1] + βE t[x′t+1Vxt+1 + δ]

Ex. Show from our results on predicting quadratics that gives

x′tVxt + δ = βx′tA
′(D + V)Axt + β trace(C′(D + V)C) + βδ
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So, we seek a pair V, δ that solves

x′tVxt + δ = βx′tA
′(D + V)Axt + β trace(C′(D + V)C) + βδ

for any xt

Suppose that there exists an N × N matrix V∗ such that

V∗ = βA′(D + V∗)A

Claim: If this is true and we define δ∗ as

δ∗ :=
β

1 − β
trace(C′(D + V∗)C)

then the pair V∗, δ∗ solves the above equation for any xt
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Proof: By hypothesis, V∗ = βA′(D + V∗)A

∴ x′tV
∗ = βx′tA

′(D + V∗)A

∴ x′tV
∗xt = βx′tA

′(D + V∗)Axt

∴ x′tV
∗xt + δ∗ = βx′tA

′(D + V∗)Axt + δ∗

By definition,

δ∗ :=
β

1 − β
trace(C′(D + V∗)C)

Ex. Complete the proof
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Hence the problem comes down to finding a V that solves

V = βA′(D + V)A (3)

Claim: A unique solution to (3) exists whenever ρ(
√

βA) < 1

Proof: Letting Q := βA′DA and Λ :=
√

βA, we can express (3)
as

V = Λ′VΛ + Q

• A discrete Lyapunov equation in V
• Since D is symmetric (being positive definite), so is Q

Since ρ(Λ) < 1, a unique solution V exists

Ex. Show that V is positive definite whenever A is nonsingular
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Asset Pricing Summary

We started with the risk neutral asset pricing equation

pt = βE t[dt+1] + βE t pt+1

with
dt = x′tDxt, xt+1 = Axt + Cwt+1

We have shown that

ρ(
√

βA) < 1 =⇒ V = βA′(D + V)A has a unique solution

From the solution V∗ and an associated constant δ∗ we get a
solution

p∗t := x′tV
∗xt + δ∗
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Moving Average Representations

Now let’s return to the general case where

• xt+1 = Axt + b + Cwt+1

• wt is a MDS with E t[wt+1w′
t+1] = I

• x0 is a constant

In the deterministic case we expressed xt in terms of x0

Here we can express xt in terms of x0 and w1, . . . , wt
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Letting vt := b + Cwt, we have

xt = Axt−1 + vt

= A(Axt−2 + vt−1) + vt

= A2xt−2 + Avt−1 + vt

= A2(Axt−3 + vt−2) + Avt−1 + vt

= A3xt−3 + A2vt−2 + Avt−1 + vt

= · · ·
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More generally,

xt = Ajxt−j + Aj−1vt−(j−1) + Aj−2vt−(j−2) + · · ·+ Avt−1 + vt

Setting j = t,

xt = Atx0 + At−1v1 + At−2v2 + · · ·+ Avt−1 + vt

= Atx0 +
t−1

∑
i=0

Aivt−i

Making the substitution vt−i = b + Cwt−i, we get

xt = Atx0 +
t−1

∑
i=0

Aib +
t−1

∑
i=0

AiCwt−i
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The expression

xt = Atx0 +
t−1

∑
i=0

Aib +
t−1

∑
i=0

AiCwt−i (4)

is called the moving average or MA representation of xt

Example. Consider the scalar case xt = axt−1 + wt with |a| < 1

The MA representation is

xt = atx0 + at−1w1 + at−2w2 + · · ·+ awt−1 + wt

Since |a| < 1, earlier shocks (e.g., w1) have less influence than
later ones (e.g., wt)

• Similar story in (4) when ‖A‖ < 1
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Dynamics of Moments

Because of the shocks in

xt+1 = Axt + b + Cwt+1

we don’t know exactly what will happen to {xt}

• Perturbed by shocks at each t

But we can work out the time path of the first two moments

• µt := E [xt]

• Σt := var[xt] := E [(xt − µt)(xt − µt)
′]

These sequences are nonrandom
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Dynamics of the Mean

First, regarding µt, take expectations over

xt+1 = Axt + b + Cwt+1

to get

E [xt+1] = E [Axt + b + Cwt+1] = AE [xt] + b

In other words,
µt+1 = Aµt + b

This linear difference equation tells us how µt evolves
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Dynamics of the Variance

We want a similar law of motion for Σt := var[xt]

In finding it we’ll use the following fact

Fact. Under our assumptions, E [xtw′
t+1] = 0 for all t

Proof: From the law of iterated expectations,

E [xtw′
t+1] = E [E t[xtw′

t+1]] = E [xtE t[w′
t+1]]

Since {wt} is an MDS, we have E t[w′
t+1] = E t[wt+1]

′ = 0′

It follows that E [xtw′
t+1] = E [0] = 0
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Returning to the dynamics of Σt := var[xt], we have

var[xt+1] = E [(xt+1 − µt+1)(xt+1 − µt+1)
′]

= E [(A(xt − µt) + Cwt+1)(A(xt − µt) + Cwt+1)
′]

The right hand side is equal (Ex. ) to

E [A(xt − µt)(xt − µt)
′A′] +E [A(xt − µt)w

′
t+1C′]

+E [Cwt+1(xt − µt)
′A′] +E [Cwt+1w′

t+1C′]

Some further manipulations (Ex. ) lead to

Σt+1 = AΣtA′ + CC′
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Matrix Dynamics

Incidentally, the law of motion

Σt+1 = AΣtA′ + CC′

is an example of a matrix difference equation

We can think of it as a dynamical system (S, g) where

• S is the set of N × N matrices

• g(Σ) = AΣA′ + CC′ maps S to S

Then Σt = gt(Σ0)
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Limits of Moments

As we’ve seen, the dynamics of the mean vector is given by

µt+1 = Aµt + b (5)

If ρ(A) < 1, then this sequence converges

By our earlier results on non-stochastic systems, the unique steady
state is

µ∗ :=
∞

∑
i=0

Aib

Moreover, by those same results,

µt → µ∗ as t → ∞ regardless of µ0
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The variance covariance matrices follow

Σt+1 = AΣtA′ + CC′

A steady state of this system is a Σ satisfying

Σ = AΣA′ + CC′ (6)

By the results on Lyapunov equations, a unique solution exists
whenever ρ(A) < 1

To summarize, if ρ(A) < 1, then

µt → µ∗ and Σt → Σ∗

where µ∗ := ∑∞
i=0 Aib and Σ∗ is the unique solution to (6)
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We can interpret

• µ∗ as the long run mean of the process

• Σ∗ as the long run variance-covariance matrix

In particular, if xt follows our model

xt+1 = Axt + b + Cwt+1 (7)

then

1. E [xt] = µ∗ =⇒ E [xt+1] = µ∗

2. var[xt] = Σ∗ =⇒ var[xt+1] = Σ∗

Ex. Check this directly using (7) and the information about µ∗

and Σ∗ on the previous slide
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Example. Let’s see this in the scalar case, where

xt+1 = axt + b + cwt+1 with {wt}
iid∼ N(0, 1)

Our results tell us that the long run mean is µ∗ := ∑∞
i=0 Aib

In the scalar case this is just

µ∗ :=
b

1 − a

So if |a| < 1 we should expect that

µt := E [xt] →
b

1 − a
as t → ∞
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µ0 µ ∗ =b/(1−a)

Figure : Convergence of µt to µ∗ in the scalar model
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Dynamics of Marginal Distributions

We’ve now learned to track E [xt] and var[xt]

This gives us some information as to

1. where probability mass is centered

2. how spread out it is, etc.

But it’s not as good as knowing all probabilities

That is, it’s not as good as knowing the full distribution of xt

Typically this is a hard problem

... Unless the shocks are normally distributed
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So let’s consider again the model

xt+1 = Axt + b + Cwt+1

Previously we assumed that {wt} is an MDS

Now we strengthen this to

{wt}
iid∼ N(0, I)

Fact. Under these assumptions,

1. x0 constant =⇒ xt is normally distributed for all t

2. x0 normally distributed =⇒ xt is normally distributed for all t
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Proof of Normality

Our model has MA representation

xt = Atx0 +
t−1

∑
i=0

Aib +
t−1

∑
i=0

AiCwt−i

Since

1. wt is normally distributed for all t

2. linear operations on normal RVs produce normal RVs,

3. x0 is constant or normal

it follows that xt is normal
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The Distribution of xt Under Normality

Recall that {wt}
iid∼ N(0, I) is a special case of an MDS

Hence our earlier results on moments are still valid:

µt+1 = Aµt + b and Σt+1 = AΣtA′ + CC′

Initial conditions are the mean and variance of x0

Since xt is normal it follows that

xt ∼ N(µt, Σt) for all t

This is a complete description of distribution dynamics for {xt}
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Example. Let xt+1 = xt + wt+1 with {wt}
iid∼ N(0, I)

Suppose that x0 is a constant

Using our rule µt+1 = Aµt + b for calculating the mean we have

µt = µt−1 = · · · = µ0 = x0

The dynamics Σt+1 = AΣtA′ + CC′ becomes

Σt+1 = Σt + I with Σ0 = 0

Thus,
xt ∼ N(x0, tI) where tI = diag(t, t, . . . , t)

This process is called a Gaussian random walk
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Example. Let xt+1 = Axt + Cwt+1 with

1. {wt}
iid∼ N(0, I)

2. x0 constant and

x0 =

(
1.5
−1.1

)
3. A and C have values

A =

(
0.6 −0.7
0.6 0.65

)
C =

(
0.1 0
0 0.1

)

We can use the rules

µt+1 = Aµt + b and Σt+1 = AΣtA′ + CC′

to track the distribution dynamics on a computer
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x0

µ1

Figure : The density N(µt, Σt) at t = 1
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x0

µ3

Figure : The density N(µt, Σt) at t = 3
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x0

µ5

Figure : The density N(µt, Σt) at t = 5
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x0

µ8

Figure : The density N(µt, Σt) at t = 8
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