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Announcements

1. This week’s lectures will be revision

• Today’s lecture is a review of optimization and linear algebra

• Tomorrow will review probability, analysis and dynamics

2. Final practice question set is up on GitHub (set 3)
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Optimization Review

Consider a maximization problem such as

max
x∈D

f (x) where f : D → R

A maximizer is a point x∗ ∈ D such that

f (x∗) ≥ f (x) ∀ x ∈ D

In general,

• there may be one, zero, or many maximizers

• maximizers can be interior or on boundaries

• similar story for minimizers
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Figure : f has a unique maximizer on D = [2, 8]
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Figure : f has a unique minimizer on D = [2, 8]
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In these pictures, the maximizer x∗ is interior

It is also stationary, meaning

f ′(x∗) = 0

For multivariate f , stationarity requires

∂

∂xi
f (x) = 0 for all i

Intuitively, the function is “flat” at such an x

• zero slope in all directions



7/55

3
2

1
0

1
2

3 3
2

1
0

1
2

3

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure : (0, 0) is a stationary point of this f
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Key Idea. For differentiable functions, any interior maximizer or
minimizer must be stationary

Intuition: Suppose that x∗ is an interior maximizer

Since x∗ is interior, ∃ an ε-ball around x∗ that lies inside D

Thus, we can move a little way in every direction without leaving D

x∗

interior

D
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If this is true and x∗ is a maximizer, then f must be stationary at
this point

For suppose this isn’t true

Then

1. we can find an uphill direction on the graph of f

2. we can move a little way in that direction without leaving D

This contradicts x∗ being a maximizer over all x ∈ D

Similar story for minimizers
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Example. Let

D := B4(0) = {x ∈ R2 : ‖x‖ < 4}

and
f (x) = f (x1, x2) = x2

1 − x1x2 + 4x2
2

Claim The point 1 := (1, 1) is not a maximizer of f on D

Proof: It suffices to show that 1 is interior and non-stationary

Clearly 1 ∈ D because ‖1‖ =
√

12 + 12 =
√

2 < 4

Moreover 1 is interior to D because ε-balls are open (and so?)

Finally 1 is not stationary because f ′1(x1, x2) = 2x1− x2 and hence

f ′1(1) = f ′1(1, 1) = 2− 1 = 1
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Necessary Conditions

In the setting of smooth functions + interior points, stationarity is
a necessary condition for maxima

• maximizer =⇒ stationary

• not stationary =⇒ not maximizer

When searching for maximizers, this helps us narrow down
candidates

Any maximizer must be either

1. a stationary point, or

2. non-interior (i.e., on the boundary)



12/55

Example. Consider the problem maxx∈D f (x) where

f (x) = x4 − 3x3 − 4x2 − x + 1, D = [−2, 4]

Stationary points are solutions to

4x3 − 9x2 − 8x− 1 = 0

One can solve this cubic (you don’t need to) to find zeros at

x1 = −0.153, x2 = −0.552, x3 = 2.96

The only possibilities for maxima are these points and −2, 4

Evaluating one at a time shows that f (−2) is the largest
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Figure : The function f (x) = x4 − 3x3 − 4x2 − x + 1
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Figure : The function f and its derivative f ′
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Constrained Optimization Review

In a way, all optimization problems are in some sense constrained

• maxx∈D f (x) constrains us to search within D

But for economists, “constrained” usually means that

1. there’s some additional constraint

2. that constraint is typically binding

Examples.

• a consumer maximizing utility over their budget set

• a firm that produces at minimal cost
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When constraints bind, maxima and minima are not usually
stationary

If we’re constrained,

• we can’t move freely in every direction

• hence we can’t always exploit a non-zero slope

Hence stationarity is not a necessary condition

We have to look for another one

This leads us to tangency conditions
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Key Idea. When f and g are both differentiable functions on D,
every solution to

max
x1,x2

f (x1, x2)

s.t. g(x1, x2) = 0

in the interior of D must satisfy

f1(x1, x2)

f2(x1, x2)
=

g1(x1, x2)

g2(x1, x2)

For if not we can shift along the constraint to a better point
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g(x1, x2) = 0

f (x1, x2) = c1

f (x1, x2) = c2 > c1

f increasing

not optimal

Figure : Tangency necessary for optimality
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g(x1, x2) = 0

f increasing

f (x1, x2) = c∗

this (x1, x2) achieves tangency

Figure : Tangency necessary for optimality
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Example. Consider the problem

max
x1,x2

f (x1, x2) = x1/2
1 + x1/2

2 s.t. x2
1 + x2

2 = 1

and xi > 0 for i = 1, 2

Setting g(x1, x2) = x2
1 + x2

2 − 1, the tangency condition becomes

x−1/2
1

x−1/2
2

=
x1

x2
⇐⇒ x−3/2

1

x−3/2
2

= 1 ⇐⇒ x1 = x2

Plugging this back into the constraint x2
1 + x2

2 = 1 gives

x∗1 =
√

1/2, x∗2 =
√

1/2

This is the only solution and the only candidate for maximizer
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Existence of Optima Review

Not every function has a maximizer / minimizer

Example. Let A be N × N and indefinite

If Q(x) = x′Ax, then Q has neither a max nor min on RN

To see that no maximizer exists, observe that

∃ z ∈ RN s.t. Q(z) = z′Az > 0

(Otherwise A would be nonpositive definite)

No x ∈ RN can maximize Q because it is dominated, for
sufficiently large n, by

Q(nz) = n2z′Az→ ∞
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Even functions on bounded domains can fail to have max / min

Example. Consider maximizing f (x) = 1/x on D := (0, 1)

No maximizer of f exists in D

Indeed, suppose to the contrary that z ∈ D is a maximizer

Then f (z) ≥ f (x) for all x ∈ (0, 1)

Since 0 < z < 1, we have 0 < z/2 < 1, and hence z/2 ∈ D

But

f (z/2) =
2
z
>

1
z
= f (z)

Contradiction
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Key Idea. Continuous functions on closed bounded sets have both
maximizers and minimizers

Consider the problem

max
T

∑
t=1

(
1
2

)t√
xt

s.t.
T

∑
t=1

xt ≤ 1 and 0 ≤ xt, t = 1, . . . , T

This is a planning problem (similar to the one from lecture 21)

Let’s show that a maximizer exists
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Step 1: Let’s write the constraint set as

D :=
{

x ∈ RT : 1′x ≤ 1, x ≥ 0
}

Claim D is closed

Let {xn} be a sequence in D converging to some x ∈ RT

We claim that x ∈ D

Note first that 1′xn → 1′x

• because xn → x =⇒ a′xn → a′x for any a ∈ RT

Since 1′xn ≤ 1 for all n, the same is true for 1′x

• weak inequalities are preserved under limits (see lecture 16)
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It remains to show that x ≥ 0

This also follows from preservation of weak inequalities under limits

Since xn ∈ D for all n, we have xn ≥ 0 for all n

Since x = limn→∞ xn, the same is true for x

In summary, 1′x ≤ 1 and x ≥ 0

Hence x ∈ D

We conclude that the limit of any sequence in D also lies in D

Hence D is closed as claimed
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Claim D is bounded

Proof: Recall that D =
{

x ∈ RT : 1′x ≤ 1, x ≥ 0
}

We need to show that

∃M ∈ R s.t. ‖x‖ ≤ M, ∀ x ∈ D

This holds with M :=
√

T because

x ∈ D =⇒ 0 ≤ xt ≤ 1, ∀ t

and hence

‖x‖ =

√√√√ T

∑
t=1

x2
t ≤

√√√√ T

∑
t=1

1 =
√

T
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To complete the proof of existence, we need to show that

f (x) = f (x1, . . . , xT) =
T

∑
t=1

(
1
2

)t√
xt

is continuous on D

We know (lecture 17) that

•
√· is a continuous function

• continuous function × scalar = continuous function

• continuous + continuous = continuous

Hence f is a continuous function... and has a maximizer on D
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Aside on Open / Closed Sets

As a rule of thumb,

• if you see strict inequalities, think “open set”

• if you see weak inequalities, think “closed set”

• if you see a mix, think “neither”

Examples.

• (a, b) = {x ∈ R : a < x < b} is open

• Bε(a) = {x ∈ RN : ‖x− a‖ < ε} is open

• [a, b] = {x ∈ R : a ≤ x ≤ b} is closed

• (a, b] = {x ∈ R : a < x ≤ b} is neither
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Uniqueness of Optima Review

Key Idea. For functions defined on a convex set,

• a strictly concave function has at most one maximizer

• a strictly convex function has at most one minimizer

Most of the time, strict concavity / convexity are checked using
derivative conditions

The most important ones are

1. positive definite Hessian =⇒ f strictly convex

2. negative definite Hessian =⇒ f strictly concave
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Example. Above we showed existence of a maximizer in the
problem

max f (x) =
T

∑
t=1

(
1
2

)t√
xt

over D :=
{

x ∈ RT : 1′x ≤ 1, x ≥ 0
}

Now let’s prove uniqueness

This will be established if we can show that

• D is a convex subset of RT

• f (x) = ∑T
t=1
( 1

2

)t√xt is strictly concave on D
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Regarding convexity of D, we have already shown (lecture 19) that

• P := {x ∈ RT : x ≥ 0} is convex

• Intersections of convex sets are convex

Moreover, D = C ∩ P where

C := {x ∈ RT : 1′x ≤ 1}

Hence it suffices to show that C is convex, or

x, y ∈ C and λ ∈ [0, 1] =⇒ z := λx + (1− λ)y ∈ C

This follows from 1′x ≤ 1 and 1′y ≤ 1, which gives

1′z = λ1′x + (1− λ)1′y ≤ λ + (1− λ) = 1
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It remains to show that

f (x) =
T

∑
t=1

(
1
2

)t√
xt

is a strictly concave function on D

To see this, note that

fij :=
∂

∂xi∂xj
f (x) =

{
−
( 1

2

)i+2 x−3/2
i if i = j

0 otherwise

Let

γi := −
(

1
2

)i+2

x−3/2
i
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The Hessian matrix of f at x is then

H(x) :=

 f11(x) · · · f1T(x)
...

fT1(x) · · · fTT(x)

 = diag(γ1, . . . , γT)

Hence, for z = (z1, . . . , zT) 6= 0 we have

z′H(x)z =
T

∑
t=1

γtz2
t < 0

Hence H(x) is negative definite

Hence f is strictly concave... and the maximizer is unique
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Linear Algebra / Vector Space Review

We spent a lot of time working with vector space concepts

• span

• independence

• bases

But when we do applications it’s almost always with matrices

Why do we need to think about vector spaces?

Answer: Because the concepts are clearer when we strip away
matrix structure, reducing linear operations to their simplest form



36/55

Linear Combinations

R
N := the set of N-tuples x = (x1, . . . , xN) with xn ∈ R

We have two fundamental linear operations that act on vectors

1. scalar multiplication

2. vector addition

Consider a collection of vectors x1, . . . , xK in RN

We can combine these with operations 1 & 2 to produce new
vectors, such as

y = α1x1 + · · ·+ αKxK

• y is a linear combination of x1, . . . , xK
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The span of X = {x1, . . . , xK} is the set of linear combinations we
can form using these vectors

That is, span(X) is all vectors y we can create by varying the
scalars in

y = α1x1 + · · ·+ αKxK

Key Idea. You cannot span RN with less than N vectors

For example, consider the case of R3

• The span of one vector is just a one dimensional line

• The span of two vectors is at most a two dimensional plane
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Figure : The span of {x1, x2} is a plane
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Hence we need at least three vectors to span R3

However, even 3 vectors won’t span R3 if some don’t contribute

For example, suppose

• we already have {x1, x2}
• we now add another vector x3...

• but x3 lies in the span of {x1, x2}

Then no overall contribution will be made

Hence we fail to span R3
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Key Idea. A set of vectors is linearly independent when they all
contribute to their span

In particular,

Key Idea. For N vectors to span RN they need to be linearly
independent

That is, for N vectors in RN

span{x1, . . . , xN} = RN ⇐⇒

{x1, . . . , xN} linearly independent
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Any N linearly independent vectors in RN is called a basis of RN

Key Idea. Every y in RN has exactly one representation as a
linear combination of basis vectors

That is, for any basis {x1, . . . , xN},

1. Every y in RN can be written as a linear combination

y = α1x1 + · · ·+ αNxN

2. The representation is unique
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Application: Finding Linear Combinations

Consider the following two vectors in R2

x1 =

(
1.2
−1.1

)
, x2 =

(−2.2
−1.1

)

Given arbitrary y in R2, can we always find scalars α1, α2 such that

y = α1x1 + α2x2

If so, how can I compute them?
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Figure : Can any y ∈ R2 be realized as a linear combination of x1, x2?
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By the preceding discussion, if {x1, x2} is linearly independent,
then yes

In particular,

{x1, x2} is linearly independent ⇐⇒ {x1, x2} is a basis of R2

In this case,

∀ y ∈ R2, ∃ unique pair α1, α2 s.t. y = α1x1 + α2x2
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How can we check whether {x1, x2} is linearly independent?

Recall: This will be true iff

α1

(
1.2
−1.1

)
+ α2

(−2.2
−1.1

)
= 0 =⇒ α1 = α2 = 0

That is,
1.2α1 = 2.2α2

−1.1α1 = 1.1α2

=⇒ α1 = α2 = 0

This is true: If both equations on the left hold then

α1 = −α2 and α1 = (2.2/1.2)α2

The only possibility is that α1 = α2 = 0
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Hence {x1, x2} is a basis of R2

In particular, for any given y ∈ R2, there is a unique pair of scalars
α1, α2 such that

y = α1x1 + α2x2

Remaining question: how to compute α1, α2?
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Make a matrix with x1 and x2 as its columns

X :=
(

1.2 −2.2
−1.1 −1.1

)

Given y ∈ R2 we seek α1, α2 such that y = α1x1 + α2x2

Equivalently, we see α1, α2 such that(
y1
y2

)
=

(
1.2 −2.2
−1.1 −1.1

)(
α1
α2

)

How to solve for (α1, α2)?
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Since X is nonsingular (why?), the solution is(
α1
α2

)
=

(
1.2 −2.2
−1.1 −1.1

)−1 (y1
y2

)

=
1

−1.32− 2.42

(−1.1 2.2
1.1 1.2

)(
y1
y2

)
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The general problem: Solve a system of linear equations

Given square matrix X and vector y, can we find α such that

Xα = y

This is the same problem as finding scalars αi such that

y = α1x1 + · · ·+ αNxN , xi = i-th column of X

If {x1, . . . , xN} linearly independent, they form a basis of RN, and

1. we can always find such scalars (existence)

2. we only find one such set of scalars (uniqueness)

3. they are equal to X−1y


