ECON2125/4021/8013
 Lecture 25

John Stachurski

Semester 1, 2015

Announcements

1. This week's lectures will be revision

- Today's lecture is a review of optimization and linear algebra
- Tomorrow will review probability, analysis and dynamics

2. Final practice question set is up on GitHub (set 3)

Optimization Review

Consider a maximization problem such as

$$
\max _{\mathbf{x} \in D} f(\mathbf{x}) \text { where } f: D \rightarrow \mathbb{R}
$$

A maximizer is a point $\mathbf{x}^{*} \in D$ such that

$$
f\left(\mathbf{x}^{*}\right) \geq f(\mathbf{x}) \quad \forall \mathbf{x} \in D
$$

In general,

- there may be one, zero, or many maximizers
- maximizers can be interior or on boundaries
- similar story for minimizers

Figure : f has a unique maximizer on $D=[2,8]$

Figure : f has a unique minimizer on $D=[2,8]$

In these pictures, the maximizer x^{*} is interior

It is also stationary, meaning

$$
f^{\prime}\left(x^{*}\right)=0
$$

For multivariate f, stationarity requires

$$
\frac{\partial}{\partial x_{i}} f(\mathbf{x})=0 \quad \text { for all } i
$$

Intuitively, the function is "flat" at such an \mathbf{x}

- zero slope in all directions

Figure : $(0,0)$ is a stationary point of this f

Key Idea. For differentiable functions, any interior maximizer or minimizer must be stationary

Intuition: Suppose that \mathbf{x}^{*} is an interior maximizer
Since \mathbf{x}^{*} is interior, \exists an ϵ-ball around \mathbf{x}^{*} that lies inside D
Thus, we can move a little way in every direction without leaving D

If this is true and \mathbf{x}^{*} is a maximizer, then f must be stationary at this point

For suppose this isn't true
Then

1. we can find an uphill direction on the graph of f
2. we can move a little way in that direction without leaving D

This contradicts \mathbf{x}^{*} being a maximizer over all $\mathbf{x} \in D$

Similar story for minimizers

Example. Let

$$
D:=B_{4}(\mathbf{0})=\left\{\mathbf{x} \in \mathbb{R}^{2}:\|\mathbf{x}\|<4\right\}
$$

and

$$
f(\mathbf{x})=f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{1} x_{2}+4 x_{2}^{2}
$$

Claim The point $\mathbf{1}:=(1,1)$ is not a maximizer of f on D
Proof: It suffices to show that $\mathbf{1}$ is interior and non-stationary
Clearly $\mathbf{1} \in D$ because $\|\mathbf{1}\|=\sqrt{1^{2}+1^{2}}=\sqrt{2}<4$
Moreover $\mathbf{1}$ is interior to D because ϵ-balls are open (and so?)
Finally $\mathbf{1}$ is not stationary because $f_{1}^{\prime}\left(x_{1}, x_{2}\right)=2 x_{1}-x_{2}$ and hence

$$
f_{1}^{\prime}(\mathbf{1})=f_{1}^{\prime}(1,1)=2-1=1
$$

Necessary Conditions

In the setting of smooth functions + interior points, stationarity is a necessary condition for maxima

- maximizer \Longrightarrow stationary
- not stationary \Longrightarrow not maximizer

When searching for maximizers, this helps us narrow down candidates

Any maximizer must be either

1. a stationary point, or
2. non-interior (i.e., on the boundary)

Example. Consider the problem $\max _{x \in D} f(x)$ where

$$
f(x)=x^{4}-3 x^{3}-4 x^{2}-x+1, \quad D=[-2,4]
$$

Stationary points are solutions to

$$
4 x^{3}-9 x^{2}-8 x-1=0
$$

One can solve this cubic (you don't need to) to find zeros at

$$
x_{1}=-0.153, \quad x_{2}=-0.552, \quad x_{3}=2.96
$$

The only possibilities for maxima are these points and $-2,4$
Evaluating one at a time shows that $f(-2)$ is the largest

Figure: The function $f(x)=x^{4}-3 x^{3}-4 x^{2}-x+1$

Figure: The function f and its derivative f^{\prime}

Constrained Optimization Review

In a way, all optimization problems are in some sense constrained

- $\max _{\mathbf{x} \in D} f(\mathbf{x})$ constrains us to search within D

But for economists, "constrained" usually means that

1. there's some additional constraint
2. that constraint is typically binding

Examples.

- a consumer maximizing utility over their budget set
- a firm that produces at minimal cost

When constraints bind, maxima and minima are not usually stationary

If we're constrained,

- we can't move freely in every direction
- hence we can't always exploit a non-zero slope

Hence stationarity is not a necessary condition
We have to look for another one

This leads us to tangency conditions

Key Idea. When f and g are both differentiable functions on D, every solution to

$$
\begin{aligned}
& \quad \max _{x_{1}, x_{2}} f\left(x_{1}, x_{2}\right) \\
& \text { s.t. } g\left(x_{1}, x_{2}\right)=0
\end{aligned}
$$

in the interior of D must satisfy

$$
\frac{f_{1}\left(x_{1}, x_{2}\right)}{f_{2}\left(x_{1}, x_{2}\right)}=\frac{g_{1}\left(x_{1}, x_{2}\right)}{g_{2}\left(x_{1}, x_{2}\right)}
$$

For if not we can shift along the constraint to a better point

Figure: Tangency necessary for optimality

Figure: Tangency necessary for optimality

Example. Consider the problem

$$
\max _{x_{1}, x_{2}} f\left(x_{1}, x_{2}\right)=x_{1}^{1 / 2}+x_{2}^{1 / 2} \quad \text { s.t. } \quad x_{1}^{2}+x_{2}^{2}=1
$$

and $x_{i}>0$ for $i=1,2$

Setting $g\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-1$, the tangency condition becomes

$$
\frac{x_{1}^{-1 / 2}}{x_{2}^{-1 / 2}}=\frac{x_{1}}{x_{2}} \quad \Longleftrightarrow \quad \frac{x_{1}^{-3 / 2}}{x_{2}^{-3 / 2}}=1 \quad \Longleftrightarrow \quad x_{1}=x_{2}
$$

Plugging this back into the constraint $x_{1}^{2}+x_{2}^{2}=1$ gives

$$
x_{1}^{*}=\sqrt{1 / 2}, \quad x_{2}^{*}=\sqrt{1 / 2}
$$

This is the only solution and the only candidate for maximizer

Figure: Maximizer at the tangent

Existence of Optima Review

Not every function has a maximizer / minimizer
Example. Let A be $N \times N$ and indefinite
If $Q(\mathbf{x})=\mathbf{x}^{\prime} \mathbf{A x}$, then Q has neither a max nor min on \mathbb{R}^{N}
To see that no maximizer exists, observe that

$$
\exists \mathbf{z} \in \mathbb{R}^{N} \text { s.t. } Q(\mathbf{z})=\mathbf{z}^{\prime} \mathbf{A} \mathbf{z}>0
$$

(Otherwise A would be nonpositive definite)
No $\mathbf{x} \in \mathbb{R}^{N}$ can maximize Q because it is dominated, for sufficiently large n, by

$$
Q(n \mathbf{z})=n^{2} \mathbf{z}^{\prime} \mathbf{A} \mathbf{z} \rightarrow \infty
$$

Even functions on bounded domains can fail to have max / min
Example. Consider maximizing $f(x)=1 / x$ on $D:=(0,1)$
No maximizer of f exists in D
Indeed, suppose to the contrary that $z \in D$ is a maximizer
Then $f(z) \geq f(x)$ for all $x \in(0,1)$
Since $0<z<1$, we have $0<z / 2<1$, and hence $z / 2 \in D$
But

$$
f(z / 2)=\frac{2}{z}>\frac{1}{z}=f(z)
$$

Contradiction

Key Idea. Continuous functions on closed bounded sets have both maximizers and minimizers

Consider the problem

$$
\begin{aligned}
& \max \sum_{t=1}^{T}\left(\frac{1}{2}\right)^{t} \sqrt{x_{t}} \\
& \text { s.t. } \quad \sum_{t=1}^{T} x_{t} \leq 1 \quad \text { and } \quad 0 \leq x_{t}, \quad t=1, \ldots, T
\end{aligned}
$$

This is a planning problem (similar to the one from lecture 21)
Let's show that a maximizer exists

Step 1: Let's write the constraint set as

$$
D:=\left\{\mathbf{x} \in \mathbb{R}^{T}: \mathbf{1}^{\prime} \mathbf{x} \leq \mathbf{1}, \mathbf{x} \geq \mathbf{0}\right\}
$$

Claim D is closed
Let $\left\{\mathbf{x}_{n}\right\}$ be a sequence in D converging to some $\mathbf{x} \in \mathbb{R}^{T}$
We claim that $\mathbf{x} \in D$
Note first that $\mathbf{1}^{\prime} \mathbf{x}_{n} \rightarrow \mathbf{1}^{\prime} \mathbf{x}$

- because $\mathbf{x}_{n} \rightarrow \mathbf{x} \Longrightarrow \mathbf{a}^{\prime} \mathbf{x}_{n} \rightarrow \mathbf{a}^{\prime} \mathbf{x}$ for any $\mathbf{a} \in \mathbb{R}^{T}$

Since $\mathbf{1}^{\prime} \mathbf{x}_{n} \leq 1$ for all n, the same is true for $\mathbf{1}^{\prime} \mathbf{x}$

- weak inequalities are preserved under limits (see lecture 16)

It remains to show that $\mathbf{x} \geq \mathbf{0}$
This also follows from preservation of weak inequalities under limits
Since $\mathbf{x}_{n} \in D$ for all n, we have $\mathbf{x}_{n} \geq \mathbf{0}$ for all n
Since $\mathbf{x}=\lim _{n \rightarrow \infty} \mathbf{x}_{n}$, the same is true for \mathbf{x}
In summary, $\mathbf{1}^{\prime} \mathbf{x} \leq 1$ and $\mathbf{x} \geq \mathbf{0}$
Hence $\mathbf{x} \in D$

We conclude that the limit of any sequence in D also lies in D
Hence D is closed as claimed

Claim D is bounded
Proof: Recall that $D=\left\{\mathbf{x} \in \mathbb{R}^{T}: \mathbf{1}^{\prime} \mathbf{x} \leq 1, \mathbf{x} \geq \mathbf{0}\right\}$
We need to show that

$$
\exists M \in \mathbb{R} \quad \text { s.t. } \quad\|\mathbf{x}\| \leq M, \quad \forall \mathbf{x} \in D
$$

This holds with $M:=\sqrt{T}$ because

$$
\mathbf{x} \in D \quad \Longrightarrow \quad 0 \leq x_{t} \leq 1, \forall t
$$

and hence

$$
\|\mathbf{x}\|=\sqrt{\sum_{t=1}^{T} x_{t}^{2}} \leq \sqrt{\sum_{t=1}^{T} 1}=\sqrt{T}
$$

To complete the proof of existence, we need to show that

$$
f(\mathbf{x})=f\left(x_{1}, \ldots, x_{T}\right)=\sum_{t=1}^{T}\left(\frac{1}{2}\right)^{t} \sqrt{x_{t}}
$$

is continuous on D

We know (lecture 17) that

- $\sqrt{ } \cdot$ is a continuous function
- continuous function \times scalar $=$ continuous function
- continuous + continuous $=$ continuous

Hence f is a continuous function... and has a maximizer on D

Aside on Open / Closed Sets

As a rule of thumb,

- if you see strict inequalities, think "open set"
- if you see weak inequalities, think "closed set"
- if you see a mix, think "neither"

Examples.

- $(a, b)=\{x \in \mathbb{R}: a<x<b\}$ is open
- $B_{\epsilon}(\mathbf{a})=\left\{\mathbf{x} \in \mathbb{R}^{N}:\|\mathbf{x}-\mathbf{a}\|<\epsilon\right\}$ is open
- $[a, b]=\{x \in \mathbb{R}: a \leq x \leq b\}$ is closed
- $(a, b]=\{x \in \mathbb{R}: a<x \leq b\}$ is neither

Uniqueness of Optima Review

Key Idea. For functions defined on a convex set,

- a strictly concave function has at most one maximizer
- a strictly convex function has at most one minimizer

Most of the time, strict concavity / convexity are checked using derivative conditions

The most important ones are

1. positive definite Hessian $\Longrightarrow f$ strictly convex
2. negative definite Hessian $\Longrightarrow f$ strictly concave

Example. Above we showed existence of a maximizer in the problem

$$
\begin{aligned}
& \max f(\mathbf{x})=\sum_{t=1}^{T}\left(\frac{1}{2}\right)^{t} \sqrt{x_{t}} \\
& \text { over } D:=\left\{\mathbf{x} \in \mathbb{R}^{T}: \mathbf{1}^{\prime} \mathbf{x} \leq 1, \mathbf{x} \geq \mathbf{0}\right\}
\end{aligned}
$$

Now let's prove uniqueness
This will be established if we can show that

- D is a convex subset of \mathbb{R}^{T}
- $f(\mathbf{x})=\sum_{t=1}^{T}\left(\frac{1}{2}\right)^{t} \sqrt{x_{t}}$ is strictly concave on D

Regarding convexity of D, we have already shown (lecture 19) that

- $P:=\left\{\mathbf{x} \in \mathbb{R}^{T}: \mathbf{x} \geq \mathbf{0}\right\}$ is convex
- Intersections of convex sets are convex

Moreover, $D=C \cap P$ where

$$
C:=\left\{\mathbf{x} \in \mathbb{R}^{T}: \mathbf{1}^{\prime} \mathbf{x} \leq 1\right\}
$$

Hence it suffices to show that C is convex, or

$$
\mathbf{x}, \mathbf{y} \in C \text { and } \lambda \in[0,1] \quad \Longrightarrow \quad \mathbf{z}:=\lambda \mathbf{x}+(1-\lambda) \mathbf{y} \in C
$$

This follows from $\mathbf{1}^{\prime} \mathbf{x} \leq 1$ and $\mathbf{1}^{\prime} \mathbf{y} \leq 1$, which gives

$$
\mathbf{1}^{\prime} \mathbf{z}=\lambda \mathbf{1}^{\prime} \mathbf{x}+(1-\lambda) \mathbf{1}^{\prime} \mathbf{y} \leq \lambda+(1-\lambda)=1
$$

It remains to show that

$$
f(\mathbf{x})=\sum_{t=1}^{T}\left(\frac{1}{2}\right)^{t} \sqrt{x_{t}}
$$

is a strictly concave function on D

To see this, note that

$$
f_{i j}:=\frac{\partial}{\partial x_{i} \partial x_{j}} f(\mathbf{x})= \begin{cases}-\left(\frac{1}{2}\right)^{i+2} x_{i}^{-3 / 2} & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

Let

$$
\gamma_{i}:=-\left(\frac{1}{2}\right)^{i+2} x_{i}^{-3 / 2}
$$

The Hessian matrix of f at \mathbf{x} is then

$$
H(\mathbf{x}):=\left(\begin{array}{ccc}
f_{11}(\mathbf{x}) & \cdots & f_{1 T}(\mathbf{x}) \\
& \vdots & \\
f_{T 1}(\mathbf{x}) & \cdots & f_{T T}(\mathbf{x})
\end{array}\right)=\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{T}\right)
$$

Hence, for $\mathbf{z}=\left(z_{1}, \ldots, z_{T}\right) \neq \mathbf{0}$ we have

$$
\mathbf{z}^{\prime} H(\mathbf{x}) \mathbf{z}=\sum_{t=1}^{T} \gamma_{t} z_{t}^{2}<0
$$

Hence $H(\mathbf{x})$ is negative definite
Hence f is strictly concave... and the maximizer is unique

Linear Algebra / Vector Space Review

We spent a lot of time working with vector space concepts

- span
- independence
- bases

But when we do applications it's almost always with matrices
Why do we need to think about vector spaces?

Answer: Because the concepts are clearer when we strip away matrix structure, reducing linear operations to their simplest form

Linear Combinations

$\mathbb{R}^{N}:=$ the set of N-tuples $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)$ with $x_{n} \in \mathbb{R}$
We have two fundamental linear operations that act on vectors

1. scalar multiplication
2. vector addition

Consider a collection of vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}$ in \mathbb{R}^{N}
We can combine these with operations $1 \& 2$ to produce new vectors, such as

$$
\mathbf{y}=\alpha_{1} \mathbf{x}_{1}+\cdots+\alpha_{K} \mathbf{x}_{K}
$$

- \mathbf{y} is a linear combination of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}$

Figure: \mathbf{y} is a linear combination of $\mathbf{x}_{1}, \mathbf{x}_{2}$

Figure: \mathbf{y} is a linear combination of $\mathbf{x}_{1}, \mathbf{x}_{2}$

Figure: \mathbf{y} is a linear combination of $\mathbf{x}_{1}, \mathbf{x}_{2}$

Figure: \mathbf{y} is a linear combination of $\mathbf{x}_{1}, \mathbf{x}_{2}$

The span of $X=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}\right\}$ is the set of linear combinations we can form using these vectors

That is, $\operatorname{span}(X)$ is all vectors \mathbf{y} we can create by varying the scalars in

$$
\mathbf{y}=\alpha_{1} \mathbf{x}_{1}+\cdots+\alpha_{K} \mathbf{x}_{K}
$$

Key Idea. You cannot span \mathbb{R}^{N} with less than N vectors

For example, consider the case of \mathbb{R}^{3}

- The span of one vector is just a one dimensional line
- The span of two vectors is at most a two dimensional plane

Figure: The span of $\left\{\mathbf{x}_{1}\right\}$ alone is a line

Figure：The span of $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ is a plane
\square

Hence we need at least three vectors to span \mathbb{R}^{3}
However, even 3 vectors won't span \mathbb{R}^{3} if some don't contribute
For example, suppose

- we already have $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$
- we now add another vector $\mathbf{x}_{3} \ldots$
- but \mathbf{x}_{3} lies in the span of $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$

Then no overall contribution will be made
Hence we fail to span \mathbb{R}^{3}

Figure : Linear dependence - the new vector \mathbf{x}_{3} doesn't contribute

Key Idea. A set of vectors is linearly independent when they all contribute to their span

In particular,
Key Idea. For N vectors to span \mathbb{R}^{N} they need to be linearly independent

That is, for N vectors in \mathbb{R}^{N}

$$
\operatorname{span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}=\mathbb{R}^{N}
$$

$\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$ linearly independent

Any N linearly independent vectors in \mathbb{R}^{N} is called a basis of \mathbb{R}^{N}

Key Idea. Every \mathbf{y} in \mathbb{R}^{N} has exactly one representation as a linear combination of basis vectors

That is, for any basis $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$,

1. Every \mathbf{y} in \mathbb{R}^{N} can be written as a linear combination

$$
\mathbf{y}=\alpha_{1} \mathbf{x}_{1}+\cdots+\alpha_{N} \mathbf{x}_{N}
$$

2. The representation is unique

Application: Finding Linear Combinations

Consider the following two vectors in \mathbb{R}^{2}

$$
\mathbf{x}_{1}=\binom{1.2}{-1.1}, \quad \mathbf{x}_{2}=\binom{-2.2}{-1.1}
$$

Given arbitrary \mathbf{y} in \mathbb{R}^{2}, can we always find scalars α_{1}, α_{2} such that

$$
\mathbf{y}=\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}
$$

If so, how can I compute them?

Figure : Can any $\mathbf{y} \in \mathbb{R}^{2}$ be realized as a linear combination of $\mathbf{x}_{1}, \mathbf{x}_{2}$?

By the preceding discussion, if $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ is linearly independent, then yes

In particular,
$\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ is linearly independent $\Longleftrightarrow\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ is a basis of \mathbb{R}^{2}

In this case,

$$
\forall \mathbf{y} \in \mathbb{R}^{2}, \exists \text { unique pair } \alpha_{1}, \alpha_{2} \text { s.t. } \mathbf{y}=\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}
$$

How can we check whether $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ is linearly independent?
Recall: This will be true iff

$$
\alpha_{1}\binom{1.2}{-1.1}+\alpha_{2}\binom{-2.2}{-1.1}=\mathbf{0} \quad \Longrightarrow \quad \alpha_{1}=\alpha_{2}=0
$$

That is,

$$
\begin{aligned}
1.2 \alpha_{1} & =2.2 \alpha_{2} \\
-1.1 \alpha_{1} & =1.1 \alpha_{2}
\end{aligned} \quad \Longrightarrow \quad \alpha_{1}=\alpha_{2}=0
$$

This is true: If both equations on the left hold then

$$
\alpha_{1}=-\alpha_{2} \quad \text { and } \quad \alpha_{1}=(2.2 / 1.2) \alpha_{2}
$$

The only possibility is that $\alpha_{1}=\alpha_{2}=0$

Hence $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ is a basis of \mathbb{R}^{2}

In particular, for any given $\mathbf{y} \in \mathbb{R}^{2}$, there is a unique pair of scalars α_{1}, α_{2} such that

$$
\mathbf{y}=\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}
$$

Remaining question: how to compute α_{1}, α_{2} ?

Make a matrix with \mathbf{x}_{1} and \mathbf{x}_{2} as its columns

$$
\mathbf{X}:=\left(\begin{array}{cc}
1.2 & -2.2 \\
-1.1 & -1.1
\end{array}\right)
$$

Given $\mathbf{y} \in \mathbb{R}^{2}$ we seek α_{1}, α_{2} such that $\mathbf{y}=\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}$

Equivalently, we see α_{1}, α_{2} such that

$$
\binom{y_{1}}{y_{2}}=\left(\begin{array}{cc}
1.2 & -2.2 \\
-1.1 & -1.1
\end{array}\right)\binom{\alpha_{1}}{\alpha_{2}}
$$

How to solve for $\left(\alpha_{1}, \alpha_{2}\right)$?

Since \mathbf{X} is nonsingular (why?), the solution is

$$
\begin{aligned}
\binom{\alpha_{1}}{\alpha_{2}} & =\left(\begin{array}{cc}
1.2 & -2.2 \\
-1.1 & -1.1
\end{array}\right)^{-1}\binom{y_{1}}{y_{2}} \\
& =\frac{1}{-1.32-2.42}\left(\begin{array}{cc}
-1.1 & 2.2 \\
1.1 & 1.2
\end{array}\right)\binom{y_{1}}{y_{2}}
\end{aligned}
$$

The general problem: Solve a system of linear equations
Given square matrix \mathbf{X} and vector \mathbf{y}, can we find α such that

$$
\mathbf{X} \alpha=\mathbf{y}
$$

This is the same problem as finding scalars α_{i} such that

$$
\mathbf{y}=\alpha_{1} \mathbf{x}_{1}+\cdots+\alpha_{N} \mathbf{x}_{N}, \quad \mathbf{x}_{i}=i \text {-th column of } \mathbf{X}
$$

If $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$ linearly independent, they form a basis of \mathbb{R}^{N}, and

1. we can always find such scalars (existence)
2. we only find one such set of scalars (uniqueness)
3. they are equal to $\mathbf{X}^{-1} \mathbf{y}$
