<ロト < 母 > < 王 > < 王 > 三 の < で 1/58

Extensions

ECON2125/8013

Lecture 3

John Stachurski

Semester 1, 2015

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の Q (P 2/58)

Extensions

Announcements, Reminders

1. Tutorials

- Start this week
- Questions are on-line
- Overcrowding
- 2. Revision / weak prerequisites
 - Can audit EMET1001
- 3. Office hours
 - Apologies

・ロト 4 日 ト 4 目 ト 4 目 ト 目 の 9 0 3/58

Constrained Optimization

A major focus of econ: the optimal allocation of scarce resources

• Optimal means optimization, scarce means constrained

Standard constrained problems:

- Maximize utility given budget
- Maximize portfolio return given risk constraints
- Minimize cost given output requirement

(ロ)、(型)、(E)、(E)、 E) のへで 4/58

Example. Maximization of utility subject to budget constraint

$$\max u(x_1, x_2)$$
 s.t. $p_1 x_1 + p_2 x_2 \le m$

Here

- p_i is the price of good i, assumed > 0
- *m* is the budget, assumed > 0

•
$$x_i \ge 0$$
 for $i = 1, 2$

Figure : Budget set when, $p_1 = 1$, $p_2 = 1.2$, m = 4

<ロト < 母 > < 国 > < 国 > < 国 > 三 の < で 5/58

Figure : Budget set when, $p_1 = 0.8$, $p_2 = 1.2$, m = 4

<ロト 4 母 ト 4 国 ト 4 国 ト 国 の 9 9 9 6/58

Example. Suppose we want to solve

$$\max u(x_1, x_2)$$
 s.t. $p_1 x_1 + p_2 x_2 \le m$

Let's assume that

$$u(x_1, x_2) = \alpha \log(x_1) + \beta \log(x_2)$$

where

0 < α, β

Let's recall the utility function's shape

<ロ > < 母 > < 喜 > < 喜 > 言 の < で 7/58

Figure : Log utility with $\alpha = 0.4$, $\beta = 0.5$

<ロト 4 課 ト 4 差 ト 4 差 ト 差 の 4 で 8/58</p>

Figure : Log utility with $\alpha = 0.4$, $\beta = 0.5$

<ロト < 母 > < 国 > < 国 > < 国 > 国 の へ の 9/58

We seek a bundle (x_1^*, x_2^*) that maximizes u over the budget set That is,

$$\alpha \log(x_1^*) + \beta \log(x_2^*) \ge \alpha \log(x_1) + \beta \log(x_2)$$

for all (x_1, x_2) satisfying $x_i \ge 0$ for each i and

 $p_1x_1 + p_2x_2 \le m$

Visually, here is the budget set and objective function:

Figure : Utility max for $p_1 = 1$, $p_2 = 1.2$, m = 4, $\alpha = 0.4$, $\beta = 0.5$

<ロト < 昂ト < 喜ト < 喜ト 差 のへで 11/58

First observation: $u(0, x_2) = u(x_1, 0) = u(0, 0) = -\infty$

• Hence we need consider only strictly positive bundles

Second observation: $u(x_1, x_2)$ is strictly increasing in both x_i

- Never choose a point (x_1, x_2) with $p_1x_1 + p_2x_2 < m$
- Otherwise can increase $u(x_1, x_2)$ by small change

Hence we can replace \leq with = in the constraint

$$p_1x_1 + p_2x_2 \le m$$
 becomes $p_1x_1 + p_2x_2 = m$

Implication: Just search along the budget line

Substitution Method

Tangency

Extensions

Substitution Method

Substitute constraint into objective function

This changes

$$\max_{x_1, x_2} \left\{ \alpha \log(x_1) + \beta \log(x_2) \right\} \text{ s.t. } p_1 x_1 + p_2 x_2 = m$$

into

$$\max_{x_1} \{ \alpha \log(x_1) + \beta \log((m - p_1 x_1) / p_2) \}$$

Since all candidates satisfy $x_1 > 0$ and $x_2 > 0$, the domain is

$$0 < x_1 < \frac{m}{p_1}$$

<ロト < 母 ト < 王 ト < 王 ・ うへで 13/58

Figure : Utility max for $p_1 = 1$, $p_2 = 1.2$, m = 4, $\alpha = 0.4$, $\beta = 0.5$

<ロト < 母 ト < 主 ト < 主 ト う へ C 14/58

Figure : Utility max for $p_1 = 1$, $p_2 = 1.2$, m = 4, $\alpha = 0.4$, $\beta = 0.5$

4 ロ ト 4 日 ト 4 王 ト 4 王 - う 4 で 15/58

Extensions

First order condition for

$$\max_{x_1} \{ \alpha \log(x_1) + \beta \log((m - p_1 x_1) / p_2) \}$$

gives

$$x_1^* = \frac{\alpha}{\alpha + \beta} \cdot \frac{m}{p_1}$$

Ex. Verify

Ex. Check second order condition (strict concavity) Substituting into $p_1x_1^* + p_2x_2^* = m$ gives

$$x_2^* = \frac{\beta}{\beta + \alpha} \cdot \frac{m}{p_2}$$

<ロト < 母 ト < 主 ト < 主 ト う へ C 16/58

Figure : Maximizer for $p_1 = 1$, $p_2 = 1.2$, m = 4, $\alpha = 0.4$, $\beta = 0.5$

<ロト < 昂ト < 喜ト < 喜ト 差 のへで 17/58

Extensions

Substitution Method Cookbook

How to solve

$$\max_{x_1,x_2} f(x_1,x_2)$$

s.t. $g(x_1, x_2) = 0$

Steps:

- 1. Write constraint as $x_2 = h(x_1)$ for some function h
- 2. Solve univariate problem $\max_{x_1} f(x_1, h(x_1))$ to get x_1^*
- 3. Plug x_1^* into $x_2 = h(x_1)$ to get x_2^*

Substitution Method

Tangency

Extensions

Example. (Minimization)

Consider the simple problem

$$\min_{x_1, x_2} \{x_1^2 + x_2^2\}$$

s.t.
$$x_1 + x_2 - 10 = 0$$

- 1. Write constraint as $x_2 = 10 x_1$
- 2. Solve $\min_{x_1} \{ x_1^2 + (10 x_1)^2 \}$ to get $x_1^* = 5$
- 3. Plug $x_1^* = 5$ into $x_1 + x_2 = 10$ to get $x_2^* = 5$

(ロ)、(日)、(三)、(三)、(三)、(20/58)

Extensions

Limitations

Substitution doesn't always work

Example. Suppose that $g(x_1, x_2) = x_1^2 + x_2^2 - 1$

Step 1 from the cookbook says

use $g(x_1, x_2) = 0$ to write x_2 as a function of x_1

But x_2 has two possible values for each $x_1 \in (-1, 1)$

$$x_2 = \pm \sqrt{1 - x_1^2}$$

In other words, x_2 is not a well defined function of x_1

(ロ)、(日)、(三)、(三)、(三)、(21/58)

As we meet more complicated constraints such problems intensify

- Constraint defines complex curve in (x_1, x_2) space
- Inequality constraints, etc.

We need more general, systematic approaches too

Leads to next discussion

Substitution Method

Tangency

Extensions

Consider again the problem

$$\max_{x_1,x_2} \left\{ \alpha \log(x_1) + \beta \log(x_2) \right\}$$

s.t.
$$p_1 x_1 + p_2 x_2 = m$$

Turns out that the maximizer has the following property:

• budget line is tangent to an indifference curve at maximizer

Figure : Maximizer for $p_1 = 1$, $p_2 = 1.2$, m = 4, $\alpha = 0.4$, $\beta = 0.5$

<ロト < 戸 ト < 王 ト < 王 ト 王 · ク へ C 23/58

<ロト</th>
 ・< 目</th>
 ・< 目</th>
 ・< 24/58</th>

In fact this is an instance of a general pattern

Notation: Let's call (x_1, x_2) interior to the budget line if $x_i > 0$ for i = 1, 2

• Not a "corner" solution

In general, any interior maximizer (x_1^\ast, x_2^\ast) of differentiable utility function u has the property

budget line is tangent to a contour line at (x_1^*, x_2^*)

Otherwise we can do better:

Figure : When tangency fails we can do better

<ロト < 戸 ト < 王 ト < 王 ト 王 · ク へ C · 25/58

<ロト < 日 × 4 目 × 4 目 × 目 の Q C 26/58

Necessity of tangency often rules out a lot of points

Can we exploit this fact to

- Build intuition
- Develop more general methods?

The answer is yes

(ロ)、(日)、(三)、(三)、(三)、(三)、(27/58)

Using Tangency: Relative Slope Conditions

- Relies on tangency idea discussed above
- Generalizes nicely

Consider the smooth, equality constrained optimization problem

 $\max_{x_1,x_2} f(x_1,x_2)$

s.t.
$$g(x_1, x_2) = 0$$

How to develop necessary conditions for optima via tangency?

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 少 4 で 28/58

Figure : Contours for f and g

<ロト < 母ト < 臣ト < 臣ト 王 のへで 29/58

Figure : Tangency necessary for optimality

<ロト < 母 ト < 差 ト < 差 ト 差 の へ C 31/58

How do we locate such an (x_1, x_2) pair?

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の Q C 32/58

Extensions

Figure : Slope of contour lines

Sketch of proof for case of \boldsymbol{f}

Let's fix c and vary x_2 with x_1 to maintain $f(x_1, x_2) = c$

This implicitly defines x_2 as a function of x_1

The slope of this function is what we're after

Differentiating $f(x_1, x_2(x_1)) = c$ with respect to x_1 gives

$$f_1(x_1, x_2) + f_2(x_1, x_2)x_2'(x_1) = 0$$

Solving gives slope $= x'_2(x_1) = -f_1(x_1, x_2)/f_2(x_1, x_2)$

Proper proof: See formula for implicit differentiation

Extensions

Now let's choose (x_1, x_2) to equalize the slopes

That is, choose (x_1, x_2) to solve

$$-\frac{f_1(x_1, x_2)}{f_2(x_1, x_2)} = -\frac{g_1(x_1, x_2)}{g_2(x_1, x_2)}$$

Equivalent:

$$\frac{f_1(x_1, x_2)}{f_2(x_1, x_2)} = \frac{g_1(x_1, x_2)}{g_2(x_1, x_2)}$$

Also need to respect $g(x_1, x_2) = 0$

(ロ)、(部)、(E)、(E)、 E) の(で 34/58)

Extensions

Figure : Condition for tangency

<ロト < 母ト < 臣ト < 臣ト 王 のへで 35/58

Tangency Condition Cookbook

In summary, when $f \mbox{ and } g$ are both differentiable functions, to find candidates for optima in

 $\max_{x_1, x_2} f(x_1, x_2)$
s.t. $g(x_1, x_2) = 0$

1. (Impose slope tangency) Set

$$\frac{f_1(x_1, x_2)}{f_2(x_1, x_2)} = \frac{g_1(x_1, x_2)}{g_2(x_1, x_2)}$$

- 2. (Impose constraint) Set $g(x_1, x_2) = 0$
- 3. Solve simultaneously for (x_1, x_2) pairs satisfying these conditions

Extensions

Example. Consider again

$$\max_{x_1,x_2} \left\{ \alpha \log(x_1) + \beta \log(x_2) \right\}$$

s.t.
$$p_1 x_1 + p_2 x_2 - m = 0$$

Then

$$\frac{f_1(x_1, x_2)}{f_2(x_1, x_2)} = \frac{g_1(x_1, x_2)}{g_2(x_1, x_2)} \quad \iff \quad \frac{\alpha}{\beta} \frac{x_2}{x_1} = \frac{p_1}{p_2}$$

Solving simultaneously with $p_1x_1 + p_2x_2 = m$ gives

$$x_1^* = \frac{\alpha}{\alpha + \beta} \cdot \frac{m}{p_1}$$
 and $x_2^* = \frac{\beta}{\beta + \alpha} \cdot \frac{m}{p_2}$

Same as before...

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の Q C 37/58

<ロト < 母 ト < 三 ト < 三 ト 三 の へ C 38/58

Extensions

Slope Conditions for Minimization

Good news: The conditions are exactly the same

In particular:

- Lack of tangency means not optimizer
- Constraint must be satisfied

<ロト < 母ト < 臣ト < 臣ト 王 のへで 39/58

Extensions

Figure : Lack of tangency

Extensions

Figure : Condition for tangency

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の へ で 40/58

Example. Minimize cost for a given level of production q

$$\min_{k,\ell} \{ rk + w\ell \}$$

s.t. $Ak^{\alpha} \ell^{\beta} \ge q$

All parameters assumed to be strictly positive

Since inputs are costly, any minimizer will produce exactly q

<ロト < 回 ト < 三 ト < 三 ト 三 · つ Q C 41/58

Figure : Constraint set when A = 2.0, $\alpha = 0.4$, $\beta = 0.5$, q = 4.0

<ロト</th>
 ・< 目</th>
 ・< 目</th>
 ・< 42/58</th>

Figure : Objective function $rk + w\ell$ when w = r = 1.0

<ロト < 団ト < 臣ト < 臣ト 王 のへで 43/58

Figure : Together, same parameters

<ロト < 部ト < Eト < Eト E のへで 45/58

Extensions

To apply the method we set

$$g(k,\ell) := Ak^{\alpha}\ell^{\beta} - q = 0$$

and

$$f(k,\ell) = rk + w\ell$$

Now let's apply the conditions to obtain candidates for minima

Slope tangency condition:

$$\frac{f_1(k,\ell)}{f_2(k,\ell)} = \frac{g_1(k,\ell)}{g_2(k,\ell)} \quad \iff \quad \frac{r}{w} = \frac{A\alpha k^{\alpha-1}\ell^{\beta}}{Ak^{\alpha}\beta\ell^{\beta-1}} = \frac{\alpha\ell}{\beta k}$$

Combine this with the constraint

$$g(k,\ell) = Ak^{\alpha}\ell^{\beta} - q = 0$$

to get

$$k^* = \left[\frac{q}{A} \left(\frac{w\alpha}{r\beta}\right)^{\beta}\right]^{1/(\alpha+\beta)} \quad \text{and} \quad \ell^* = \left[\frac{q}{A} \left(\frac{r\beta}{w\alpha}\right)^{\alpha}\right]^{1/(\alpha+\beta)}$$

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の へ で 46/58

Figure : Minimizer (k^*, ℓ^*)

<ロト < 団ト < 茎ト < 茎ト 茎 のへで 47/58

Extensions

Example. Intertemporal problem

$$\max_{c_1, c_2} U(c_1, c_2) := u(c_1) + \beta u(c_2)$$

s.t. $c_2 \le (1+r)(w-c_1)$

where

- r = interest rate, w = wealth, $\beta =$ discount factor
- all parameters > 0 and u strictly increasing

Write constraint as $g(c_1, c_2) := (1+r)(w-c_1) - c_2 = 0$

Any interior solution must satisfy tangency condition

$$\frac{U_1(c_1, c_2)}{U_2(c_1, c_2)} = \frac{g_1(c_1, c_2)}{g_2(c_1, c_2)} \quad \iff \quad \frac{u'(c_1)}{u'(c_2)} = \beta(1+r)$$

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の < ① 48/58

Substitution Method

Tangency

Method of Lagrange

The "standard machine" for optimization with equality constraints

$$\max_{x_1, x_2} f(x_1, x_2) \text{ s.t. } g(x_1, x_2) = 0$$

Set

$$\mathcal{L}(x_1, x_2, \lambda) := f(x_1, x_2) + \lambda g(x_1, x_2)$$

and solve

$$rac{\partial}{\partial x_1}\mathcal{L}=0, \quad rac{\partial}{\partial x_2}\mathcal{L}=0, \quad rac{\partial}{\partial \lambda}\mathcal{L}=0$$

simultaneously

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の へ で 49/58

-

Tangency

50/58

Since $\mathcal{L}(x_1, x_2, \lambda) := f(x_1, x_2) + \lambda g(x_1, x_2)$ we have

$$\frac{\partial}{\partial x_i}\mathcal{L}(x_1, x_2, \lambda) = 0 \iff f_i(x_1, x_2) = -\lambda g_i(x_1, x_2), \ i = 1, 2$$

Hence
$$\frac{\partial}{\partial x_1} \mathcal{L} = \frac{\partial}{\partial x_2} \mathcal{L} = 0$$
 gives
 $\frac{f_1(x_1, x_2)}{f_2(x_1, x_2)} = \frac{g_1(x_1, x_2)}{g_2(x_1, x_2)}$

Finally

$$\frac{\partial}{\partial \lambda} \mathcal{L}(x_1, x_2, \lambda) = 0 \iff g(x_1, x_2) = 0$$

Hence the method leads us to the same conditions

Extensions

Extensions

Let's look at some problems and extensions

Remark 1: The direct tangent slope condition can fail if we're dividing by zero in

$$\frac{f_1(x_1, x_2)}{f_2(x_1, x_2)} = \frac{g_1(x_1, x_2)}{g_2(x_1, x_2)}$$

In this case try the more general Lagrange conditions

$$f_1(x_1, x_2) + \lambda g_1(x_1, x_2) = 0$$
$$f_2(x_1, x_2) + \lambda g_2(x_1, x_2) = 0$$

(ロ)、(部)、(E)、(E)、 E) のへで 51/58

Extensions

Remark 2: Consider the two optimization problems

$$\max_{x_1,x_2} \left\{ \alpha \log(x_1) + \beta \log(x_2) \right\}$$

s.t. $p_1 x_1 + p_2 x_2 = m$

and

$$\max_{x_1,x_2} x_1^{\alpha} x_2^{\beta}$$

s.t. $p_1 x_1 + p_2 x_2 = m$

The tangency conditions are identical

$$\frac{\alpha}{\beta} \frac{x_2}{x_1} = \frac{p_1}{p_2}$$
 and $= \frac{\alpha x_1^{\alpha - 1} x_2^{\beta}}{\beta x_1^{\alpha} x_2^{\beta - 1}} = \frac{\alpha}{\beta} \frac{x_2}{x_1} = \frac{p_1}{p_2}$

<ロト < 部ト < Eト < Eト E の C 52/58

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の へ C 53/58

More generally, maximizers are unchanged by increasing transformations

• Can be useful to simplify your problem

On the other hand maximum values are changed, of course More on this later...

Substitution Method

Tangency

<ロト < 母 ト < 臣 ト < 臣 ト 三 の へ C 54/58

Extensions

Corner Solutions

So far all our solutions have been interior $(x_i > 0 \text{ for } i = 1, 2)$ Such solutions can be tracked down by the tangency conditions However sometimes solutions are naturally on the boundaries Example. Maximize $x_1 + \log(x_2)$ subject to

$$p_1x_1 + p_2x_2 = m$$
 and $x_1, x_2 \ge 0$

Let's try the tangency approach with $p_1 = p_2 = 1$ and m = 0.4

Extensions

Tangency condition is

$$\frac{1}{1/x_2} = \frac{p_1}{p_2} \iff x_2 = \frac{p_1}{p_2} = 1$$

Applying the budget constraint gives

$$x_1 + x_2 = 0.4$$
 and hence $x_1 = -0.6$

Meaning: There is no tangent point in

$$D:=\{(x_1,x_2): x_1\geq 0, \; x_2\geq 0 \; {
m and} \; p_1x_1+p_2x_2=m\}$$

< ロ ト < 母 ト < 臣 ト < 臣 ト 三 の へ で 55/58</p>

Figure : Tangent point is infeasible

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の へ C 57/58

Extensions

Interpretation: No interior solution

Put differently

- At every interior point on the budget line you can do better
- Hence solution must be on the boundary

Since $x_2 = 0$ implies $x_1 + \log(x_2) = -\infty$, solution is

•
$$x_1^* = 0$$

•
$$x_2^* = m/p_2 = 0.4$$

Figure : Corner solution