Logi

<ロ > < 母 > < 喜 > < 喜 > 三 の Q で 1/48

ECON2125/8013

Lecture 4

John Stachurski

Semester 1, 2015

<ロト
(日)

Announcements and Reminders

- No lecture tomorrow
- First tutorial tomorrow
- Extra tutorial on the way (11am Fridays?)
- Small study groups?
- Extra reading?

Optimization and Computers

Some optimization problems are pretty easy

- All functions are differentiable
- Few choice variables (low dimensional)
- Concave (for max) or convex (for min)
- First order / tangency conditions relatively simple

Textbook examples often chosen to have this structure

Logic

In reality many problems don't have this structure

- Can't take derivatives
- Many choice variables (high dimensional)
- Neither concave nor convex local maxima and minima

Moreover, even if we can use derivative conditions they can be useless

• For N choice variables, FOCs are a nonlinear system in \mathbb{R}^N

Can Computers Save Us?

For any function we can always try brute force optimization

Here's an example for the following function

(ロ)、(型)、(E)、(E)、 E) の(で 5/48)

Logic

Figure : The function to maximize

<ロト 4 母 ト 4 国 ト 4 国 ト 国 の 9 9 9 6/48

Logic

Figure : Grid of points to evaluate the function at

<ロト < 母 > < E > < E > E の < で 7/48

Logic

Figure : Evaluations

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 かへで 8/48

<ロト < 母 ト < 臣 ト < 臣 ト 王 の Q (g/48

Grid size = $20 \times 20 = 400$

Outcomes

- Number of function evaluations = 400
- Time taken = almost zero
- Maximal value recorded = 1.951
- True maximum = 2

Not bad and we can easily do better

Logic

Figure : $50^2 = 2500$ evaluations

4 日 ト 4 日 ト 4 目 ト 目 の 4 で 10/48

<ロト < 母 ト < 主 ト < 主 ト う へ C 11/48

Sets

- Number of function evaluations $= 50^2$
- Time taken = 101 microseconds
- Maximal value recorded = 1.992
- True maximum = 2

So why even study optimization?

Logic

The problem is mainly with larger numbers of choice variables

- 3 vars: $\max_{x_1, x_2, x_3} f(x_1, x_2, x_3)$
- 4 vars: $\max_{x_1, x_2, x_3, x_4} f(x_1, x_2, x_3, x_4)$

• • • •

If we have 50 grid points per variable and

- 2 variables then evaluations $= 50^2 = 2500$
- 3 variables then evaluations $= 50^3 = 125,000$
- 4 variables then evaluations $= 50^4 = 6,250,000$
- 5 variables then evaluations $= 50^5 = 312,500,000$

• • • •

Logic

<ロト < 母 ト < 王 ト < 王 ト 三 の < で 13/48

Sets

Example. Recent study: Optimal placement of drinks across vending machines in Tokyo

Approximate dimensions of problem:

- Number of choices for each variable = 2
- Number of choice variables = 1000

Hence number of possibilities $= 2^{1000}$

How big is that?

Logic

In [10]: 2**1000

Out[10]:

 $107150860718626732094842504906000181056140481170 \\ 553360744375038837035105112493612249319837881569 \\ 585812759467291755314682518714528569231404359845 \\ 775746985748039345677748242309854210746050623711 \\ 418779541821530464749835819412673987675591655439 \\ 460770629145711964776865421676604298316526243868 \\ 37205668069376 \\ \end{cases}$

Set

<ロト < 母 ト < 主 ト < 主 ト う へ C 15/48

Let's say my machine can evaluate about 1 billion possibilities per second

How long would that take?

ets

In [16]: (2**1000 / 10**9) / 31556926 # In years
Out[16]:
339547840365144349278007955863635707280678989995
899349462539661933596146571733926965255861364854
060286985707326991591901311029244639453805988092
045933072657455119924381235072941549332310199388
301571394569707026437986448403352049168514244509
939816790601568621661265174170019913588941596

<ロト < 部 ト < 臣 ト < 臣 ト ○ ○ ○ ○ 16/48

Logi

Sets

What about high performance computing?

- more powerful hardware
- faster CPUs
- GPUs
- vector processors
- cloud computing
- massively parallel supercomputers

• • • •

Let's say speed up is 10^{12} (wildly optimistic)

<ロト < 母 ト < 王 ト < 王 ト 三 の < ⁽⁾ 17/48

Logic

In [19]: (2**1000 / 10**(9 + 12)) / 31556926
Out[19]:
3395478403651443492780079558636357072806789899958
9934946253966193359614657173392696525586136485406
0286985707326991591901311029244639453805988092045
9330726574551199243812350729415493323101993883015

9330726574551199243812350729415493323101993883015 7139456970702643798644840335204916851424450993981 6790601568621661265174170019

For comparison:

In [20]: 5 * 10**9 # Expected lifespan of sun
Out[20]: 5000000000

Logic

<ロト < 回 ト < 三 ト < 三 ト 三 · ク Q で 19/48

Sets

Message: There are serious limits to computation

What's required is clever analysis

Exploit what information we have

- without information (oracle) we're stuck
- with information / structure we can do clever things

Examples later on...

Logi

<ロト<日

・< 日

・< 三

・< 三

・< 三

・< 三

・< 20/48

New Topic

ELEMENTS OF SET THEORY

Sets

<ロト < 母 ト < 臣 ト < 臣 ト 三 の へ C 21/48

Elements of Set Theory

We now turn to more formal / foundational ideas

- sets
- functions
- logic
- proofs

Mainly review of key ideas

Logic

Common Symbols

- $P \implies Q$ means "P implies Q"
- $P \iff Q$ means " $P \implies Q$ and $Q \implies P$ "
- ∃ means "there exists"
- ∀ means "for all"
- s.t. means "such that"
- ∵ means "because"
- ∴ means "therefore"
- a := 1 means "a is defined to be equal to 1"
- ${\mathbb R}$ means all real numbers
- \mathbb{N} means the natural numbers $\{1, 2, \ldots\}$

Logic

Logic

Let P and Q be statements, such as

- x is a negative integer
- x is an odd number
- the area of any circle in the plane is -17

Law of the excluded middle: Every mathematical statement is either true or false

Statement " $P \implies Q$ " means "P implies Q" Example. k is even $\implies k = 2n$ for some integer n

Logic

<ロト < 母 ト < 臣 ト < 臣 ト 三 の へ C 24/48

Sets

Equivalent forms of $P \implies Q$:

- 1. If P is true then Q is true
- 2. P is a sufficient condition for Q
- 3. Q is a necessary condition for P
- 4. If Q fails then P fails

Q true		
	<i>P</i> true	

Equivalent ways of saying $P \implies Q$ is <u>not</u> true:

- 1. P does not imply Q
- 2. P is not sufficient for Q
- 3. Q is not necessary for P
- 4. Even if Q fails, P can still hold

<ロト<日

ト<

日

ト

<

ト

</br />
</br />
</br>

Example

Let

- $P := "n \in \mathbb{N}$ and even"
- Q := "n even"

Then

- 1. $P \implies Q$
- 2. P is sufficient for Q
- 3. Q is necessary for P
- 4. If Q fails then P fails

<ロト < 母 ト < 主 ト < 主 ト ラ マ へ C 27/48

Example

Let

- P := "R is a rectangle"
- Q := "R is a square"

Then

- 1. $P \not\Rightarrow Q$
- 2. P is not sufficient for Q
- 3. Q is not necessary for P
- 4. Just because Q fails does not mean that P fails

Proof by Contradiction

Suppose we wish to prove a statement such as $P\implies Q$

A proof by contradiction starts by assuming

- 1. P holds
- 2. and yet Q fails

We then show that this scenario leads to a contradiction

Examples.

- 1 < 0
- 10 is an odd number

We conclude that $P \implies Q$ is valid after all

Example. Suppose that island X is populated only by pirates and knights

- pirates always lie
- knights always tell the truth

Claim to prove: If person Y says "I'm a pirate" then person Y is \underline{not} a native of island X

Strategy for the proof:

- 1. Suppose person Y is a native of the island
- 2. Show that this leads to a contradiction
- 3. Conclude that Y is not a native of island X, as claimed

(ロ)、(日)、(三)、(三)、(三)、(三)、(2)/48

Sets

Proof:

Suppose to the contrary that person Y \underline{is} a native of island X

Then Y is either a pirate or a knight

Suppose first that Y is knight

• Y is a knight who claims to be a pirate

This is impossible, since knights always tell the truth Suppose next that Y is pirate

• Y is a pirate who claims to be a pirate

Since pirates always lie, they would not make such a statement Either way we get a contradiction Example. There is <u>no</u> $x \in \mathbb{R}$ such that 0 < x < 1/n, $\forall n \in \mathbb{N}$

Proof: Suppose to the contrary that such an x exists

Since x > 0 the number 1/x exists, is finite

Let N be the smallest integer such that $N \ge 1/x$

• If x = 0.3 then $1/x = 3.333 \cdots$ so set N = 4

Since $N \ge 1/x$ we also have $1/N \le x$ On the other hand, since $N \in \mathbb{N}$, we have x < 1/NBut then 1/N < 1/N, which is impossible — a contradiction

<ロト < 母 ト < 三 ト < 三 ト 三 の へ C 32/48

Example. Let $n \in \mathbb{N}$

Claim: $n^2 \text{ odd} \implies n \text{ odd}$

Proof: Suppose to the contrary that

1. $n \in \mathbb{N}$ and n^2 is odd

2. but *n* is even

Then n = 2k for some $k \in \mathbb{N}$ Hence $n^2 = (2k)^2$ But then $n^2 = 2m$ for $m := 2k^2 \in \mathbb{N}$

Contradiction

Logic

Will often refer to the real numbers, \mathbb{R}

Understand it to contain "all of the numbers" on the "real line"

Contains both the rational and the irrational numbers

<ロト < 目 ト < 目 ト < 目 ト 目 の へ C 33/48

<ロト < 部 < ミト < ミト ミ の へ C 34/48

Sets

 ${\mathbb R}$ is an example of a set

A set is a collection of objects viewed as a whole

(In case of \mathbb{R} , the objects are numbers)

Other examples of sets:

- set of all rectangles in the plane
- set of all prime numbers
- set of monkeys in Japan

Logic

<ロト < 目 > < 目 > < 目 > < 目 > 25/48

Sets

Notation:

- Sets: *A*, *B*, *C*
- Elements: *x*,*y*,*z*

Important sets:

- $\mathbb{N} := \{1, 2, 3, \ldots\}$
- $\mathbb{Z} := \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- $\mathbb{Q} := \{p/q : p, q \in \mathbb{Z}, q \neq 0\}$
- $\mathbb{R} := \mathbb{Q} \cup \{ \text{ irrationals } \}$

Intervals of $\ensuremath{\mathbb{R}}$

Common notation:

$(a,b) := \{x \in \mathbb{R} : a < x < b\}$
$(a,b] := \{x \in \mathbb{R} : a < x \le b\}$
$[a,b) := \{x \in \mathbb{R} : a \le x < b\}$
$[a,b] := \{x \in \mathbb{R} : a \le x \le b\}$
$[a,\infty):=\{x\in\mathbb{R}:a\leq x\}$
$(-\infty, b) := \{x \in \mathbb{R} : x < b\}$

Etc.

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の へ で 36/48

Logic

Sets

Let A and B be sets

Statement $x \in A$ means that x is an element of A

 $A \subset B$ means that any element of A is also an element of BExamples.

- $\mathbb{N} \subset \mathbb{Z}$
- irrationals are a subset of ${\mathbb R}$

A = B means that A and B contain the same elements

• Equivalently, $A \subset B$ and $B \subset A$

<ロト < 目 ト < 目 ト < 目 ト 目 の Q (P 37/48)

Logic

Sets

Let S be a set and A and B be subsets of S

Union of A and B

$$A \cup B := \{x \in S : x \in A \text{ or } x \in B\}$$

Intersection of A and B

$$A \cap B := \{x \in S : x \in A \text{ and } x \in B\}$$

<ロト < 母 ト < 臣 ト < 臣 ト 三 の へ で 38/48

(ロ)、(日)、(三)、(三)、(三)、(三)、(2)、(3)/48

Sets

Set theoretic difference:

$$A \setminus B := \{x \in S : x \in A \text{ and } x \notin B\}$$

In other words, all points in A that are not points in B

Examples.

- $\mathbb{Z} \setminus \mathbb{N} = \{\ldots, -2, -1, 0\}$
- $\mathbb{R} \setminus \mathbb{Q}$ = the set of irrational numbers
- $\mathbb{R} \setminus [0,\infty) = (-\infty,0)$
- $\mathbb{R} \setminus (a,b) = (-\infty,a] \cup [b,\infty)$

Logic

<ロト < 母 ト < 三 ト < 三 ト 三 の へ C 40/48

Complement of *A* is all elements of *S* that are not in *A*:

$$A^c := S \setminus A :=: \{x \in S : x \notin A\}$$

Remarks:

- Need to know what S is before we can determine A^c
- If not clear better write $S \setminus A$

Example. $(a, \infty)^c$ generally understood to be $(-\infty, a]$

Sets

Figure : Unions, intersections and complements

Logi

Sets

```
In [1]: set_1 = {'green', 'eggs', 'ham'}
```

```
In [2]: set_2 = {'red', 'green'}
```

```
In [3]: set_1.intersection(set_2)
Out[3]: {'green'}
```

```
In [4]: set_1.difference(set_2)
Out[4]: {'eggs', 'ham'}
```

```
In [5]: set_1.union(set_2)
Out[5]: {'eggs', 'green', 'ham', 'red'}
```

Logic

Set operations:

If A and B subsets of S, then

1.
$$A \cup B = B \cup A$$
 and $A \cap B = B \cap A$
2. $(A \cup B)^c = B^c \cap A^c$ and $(A \cap B)^c = B^c \cup A^c$
3. $A \setminus B = A \cap B^c$
4. $(A^c)^c = A$

The **empty set** \emptyset is the set containing no elements If $A \cap B = \emptyset$, then A and B said to be **disjoint** Sets

Infinite Unions and Intersections

Given a family of sets $K_{\lambda} \subset S$ with $\lambda \in \Lambda$,

$$\bigcap_{\lambda \in \Lambda} K_{\lambda} := \{ x \in S : x \in K_{\lambda} \text{ for all } \lambda \in \Lambda \}$$

 $\bigcup_{\lambda \in \Lambda} K_{\lambda} := \{ x \in S : \text{there exists an } \lambda \in \Lambda \text{ such that } x \in K_{\lambda} \}$

"there exists" means "there exists <u>at least</u> one"

Logi

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の へ C 45/48

Sets

Example. Let $A := \bigcap_{n \in \mathbb{N}} (0, 1/n)$

Claim: $A = \emptyset$

Proof: We need to show that A contains no elements Suppose to the contrary that $x \in A = \bigcap_{n \in \mathbb{N}} (0, 1/n)$ Then x is a number satisfying 0 < x < 1/n for all $n \in \mathbb{N}$ No such x exists

Contradiction

<ロト < 母 ト < 三 ト < 三 ト 三 の へ で 46/48

Example. For any a < b we have $\cup_{\epsilon > 0} [a + \epsilon, b) = (a, b)$

Proof: Pick any a < bSuppose first that $x \in \bigcup_{\epsilon > 0} [a + \epsilon, b)$ This means there exists $\epsilon > 0$ such that $a + \epsilon \le x < b$ Clearly a < x < b, and hence $x \in (a, b)$ Conversely, if a < x < b, then $\exists \epsilon > 0$ s.t. $a + \epsilon \le x < b$ Hence $x \in \bigcup_{\epsilon > 0} [a + \epsilon, b)$

Ex. Show that $\cup_{n \in \mathbb{N}} (-n, n) = \mathbb{R}$

Logi

Sets

Let S be any set

Let $K_{\lambda} \subset S$ for all $\lambda \in \Lambda$

de Morgan's laws state that:

 $\left[\bigcup_{\lambda \in \Lambda} K_{\lambda}\right]^{c} = \bigcap_{\lambda \in \Lambda} K_{\lambda}^{c} \quad \text{and} \quad \left[\bigcap_{\lambda \in \Lambda} K_{\lambda}\right]^{c} = \bigcup_{\lambda \in \Lambda} K_{\lambda}^{c}$

<ロト < 部 > < E > < E > E の < C 47/48

Let's prove that $A := (\bigcup_{\lambda \in \Lambda} K_{\lambda})^{c} = \bigcap_{\lambda \in \Lambda} K_{\lambda}^{c} =: B$ Suffices to show that $A \subset B$ and $B \subset A$

Let's just do $A \subset B$

Must show that every $x \in A$ is also in B

Fix $x \in A$

Since $x \in A$, it must be that x is not in $\cup_{\lambda \in \Lambda} K_{\lambda}$

 \therefore x is not in any K_{λ}

 $\therefore \quad x \in K^c_\lambda \text{ for each } \lambda \in \Lambda$

 $\therefore \quad x \in \cap_{\lambda \in \Lambda} K_{\lambda}^c =: B$

<ロト < 目 × 4 目 × 4 目 × 目 の Q で 48/48