ECON2125/8013
 Lecture 4

John Stachurski

Semester 1, 2015

Announcements and Reminders

- No lecture tomorrow
- First tutorial tomorrow
- Extra tutorial on the way (11am Fridays?)
- Small study groups?
- Extra reading?

Optimization and Computers

Some optimization problems are pretty easy

- All functions are differentiable
- Few choice variables (low dimensional)
- Concave (for max) or convex (for min)
- First order / tangency conditions relatively simple

Textbook examples often chosen to have this structure

In reality many problems don't have this structure

- Can't take derivatives
- Many choice variables (high dimensional)
- Neither concave nor convex - local maxima and minima

Moreover, even if we can use derivative conditions they can be useless

- For N choice variables, FOCs are a nonlinear system in \mathbb{R}^{N}

Can Computers Save Us?

For any function we can always try brute force optimization

Here's an example for the following function

Figure: The function to maximize

Figure : Grid of points to evaluate the function at

Figure: Evaluations

Grid size $=20 \times 20=400$
Outcomes

- Number of function evaluations $=400$
- Time taken $=$ almost zero
- Maximal value recorded $=1.951$
- True maximum $=2$

Not bad and we can easily do better

Figure : $50^{2}=2500$ evaluations

- Number of function evaluations $=50^{2}$
- Time taken $=101$ microseconds
- Maximal value recorded $=1.992$
- True maximum $=2$

So why even study optimization?

The problem is mainly with larger numbers of choice variables

- 3 vars: $\max _{x_{1}, x_{2}, x_{3}} f\left(x_{1}, x_{2}, x_{3}\right)$
- 4 vars: $\max _{x_{1}, x_{2}, x_{3}, x_{4}} f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$
-...

If we have 50 grid points per variable and

- 2 variables then evaluations $=50^{2}=2500$
- 3 variables then evaluations $=50^{3}=125,000$
- 4 variables then evaluations $=50^{4}=6,250,000$
- 5 variables then evaluations $=50^{5}=312,500,000$
- . .

Example. Recent study: Optimal placement of drinks across vending machines in Tokyo

Approximate dimensions of problem:

- Number of choices for each variable $=2$
- Number of choice variables $=1000$

Hence number of possibilities $=2^{1000}$

How big is that?

In [10]: $2 * * 1000$
 Out [10]:
 107150860718626732094842504906000181056140481170 553360744375038837035105112493612249319837881569 585812759467291755314682518714528569231404359845 775746985748039345677748242309854210746050623711 418779541821530464749835819412673987675591655439 460770629145711964776865421676604298316526243868 37205668069376

Let's say my machine can evaluate about 1 billion possibilities per second

How long would that take?

[^0]What about high performance computing?

- more powerful hardware
- faster CPUs
- GPUs
- vector processors
- cloud computing
- massively parallel supercomputers
- ••

Let's say speed up is 10^{12} (wildly optimistic)
In [19]: $(2 * * 1000 / 10 * *(9+12)) / 31556926$ Out [19]:
3395478403651443492780079558636357072806789899958 9934946253966193359614657173392696525586136485406 0286985707326991591901311029244639453805988092045 9330726574551199243812350729415493323101993883015 7139456970702643798644840335204916851424450993981 6790601568621661265174170019

For comparison:

In [20]: 5 * 10**9 \# Expected lifespan of sun Out[20]: 5000000000

Message: There are serious limits to computation
What's required is clever analysis
Exploit what information we have

- without information (oracle) we're stuck
- with information / structure we can do clever things

Examples later on...

New Topic

ELEMENTS OF SET THEORY

Elements of Set Theory

We now turn to more formal / foundational ideas

- sets
- functions
- logic
- proofs

Mainly review of key ideas

Common Symbols

- $P \Longrightarrow Q$ means " P implies Q "
- $P \Longleftrightarrow Q$ means " $P \Longrightarrow Q$ and $Q \Longrightarrow P$ "
- \exists means "there exists"
- \forall means "for all"
- s.t. means "such that"
- \because means "because"
- \therefore means "therefore"
- $a:=1$ means " a is defined to be equal to 1 "
- \mathbb{R} means all real numbers
- \mathbb{N} means the natural numbers $\{1,2, \ldots\}$

Logic

Let P and Q be statements, such as

- x is a negative integer
- x is an odd number
- the area of any circle in the plane is -17

Law of the excluded middle: Every mathematical statement is either true or false

Statement " $P \Longrightarrow Q$ " means " P implies Q "
Example. k is even $\Longrightarrow k=2 n$ for some integer n

Equivalent forms of $P \Longrightarrow Q$:

1. If P is true then Q is true
2. P is a sufficient condition for Q
3. Q is a necessary condition for P
4. If Q fails then P fails

Equivalent ways of saying $P \Longrightarrow Q$ is not true:

1. P does not imply Q
2. P is not sufficient for Q
3. Q is not necessary for P
4. Even if Q fails, P can still hold

Example

Let

- $P:=" n \in \mathbb{N}$ and even"
- $Q:=$ " n even"

Then

1. $P \Longrightarrow Q$
2. P is sufficient for Q
3. Q is necessary for P
4. If Q fails then P fails

Example

Let

- $P:=$ " R is a rectangle"
- $Q:=$ " R is a square"

Then

1. $P \nRightarrow Q$
2. P is not sufficient for Q
3. Q is not necessary for P
4. Just because Q fails does not mean that P fails

Proof by Contradiction

Suppose we wish to prove a statement such as $P \Longrightarrow Q$
A proof by contradiction starts by assuming

1. P holds
2. and yet Q fails

We then show that this scenario leads to a contradiction

Examples.

- $1<0$
- 10 is an odd number

We conclude that $P \Longrightarrow Q$ is valid after all

Example. Suppose that island X is populated only by pirates and knights

- pirates always lie
- knights always tell the truth

Claim to prove: If person Y says "I'm a pirate" then person Y is not a native of island X

Strategy for the proof:

1. Suppose person Y is a native of the island
2. Show that this leads to a contradiction
3. Conclude that Y is not a native of island X , as claimed

Proof:

Suppose to the contrary that person Y is a native of island X
Then Y is either a pirate or a knight
Suppose first that Y is knight

- Y is a knight who claims to be a pirate

This is impossible, since knights always tell the truth
Suppose next that Y is pirate

- Y is a pirate who claims to be a pirate

Since pirates always lie, they would not make such a statement
Either way we get a contradiction

Example. There is no $x \in \mathbb{R}$ such that $0<x<1 / n, \forall n \in \mathbb{N}$
Proof: Suppose to the contrary that such an x exists

Since $x>0$ the number $1 / x$ exists, is finite
Let N be the smallest integer such that $N \geq 1 / x$

- If $x=0.3$ then $1 / x=3.333 \cdots$ so set $N=4$

Since $N \geq 1 / x$ we also have $1 / N \leq x$
On the other hand, since $N \in \mathbb{N}$, we have $x<1 / N$
But then $1 / N<1 / N$, which is impossible - a contradiction

Example. Let $n \in \mathbb{N}$
Claim: n^{2} odd $\Longrightarrow n$ odd

Proof: Suppose to the contrary that

1. $n \in \mathbb{N}$ and n^{2} is odd
2. but n is even

Then $n=2 k$ for some $k \in \mathbb{N}$
Hence $n^{2}=(2 k)^{2}$
But then $n^{2}=2 m$ for $m:=2 k^{2} \in \mathbb{N}$
Contradiction

Sets

Will often refer to the real numbers, \mathbb{R}

Understand it to contain "all of the numbers" on the "real line"

Contains both the rational and the irrational numbers
\mathbb{R} is an example of a set
A set is a collection of objects viewed as a whole
(In case of \mathbb{R}, the objects are numbers)

Other examples of sets:

- set of all rectangles in the plane
- set of all prime numbers
- set of monkeys in Japan

Notation:

- Sets: A, B, C
- Elements: x, y, z

Important sets:

- $\mathbb{N}:=\{1,2,3, \ldots\}$
- $\mathbb{Z}:=\{\ldots,-2,-1,0,1,2, \ldots\}$
- $\mathbb{Q}:=\{p / q: p, q \in \mathbb{Z}, q \neq 0\}$
- $\mathbb{R}:=\mathbb{Q} \cup\{$ irrationals $\}$

Intervals of \mathbb{R}

Common notation:

$$
\begin{aligned}
& (a, b):=\{x \in \mathbb{R}: a<x<b\} \\
& (a, b]:=\{x \in \mathbb{R}: a<x \leq b\} \\
& {[a, b):=\{x \in \mathbb{R}: a \leq x<b\}} \\
& {[a, b]:=\{x \in \mathbb{R}: a \leq x \leq b\}} \\
& {[a, \infty):=\{x \in \mathbb{R}: a \leq x\}} \\
& (-\infty, b):=\{x \in \mathbb{R}: x<b\}
\end{aligned}
$$

Etc.

Let A and B be sets
Statement $x \in A$ means that x is an element of A
$A \subset B$ means that any element of A is also an element of B
Examples.

- $\mathbb{N} \subset \mathbb{Z}$
- irrationals are a subset of \mathbb{R}
$A=B$ means that A and B contain the same elements
- Equivalently, $A \subset B$ and $B \subset A$

Let S be a set and A and B be subsets of S

Union of A and B

$$
A \cup B:=\{x \in S: x \in A \text { or } x \in B\}
$$

Intersection of A and B

$$
A \cap B:=\{x \in S: x \in A \text { and } x \in B\}
$$

Set theoretic difference:

$$
A \backslash B:=\{x \in S: x \in A \text { and } x \notin B\}
$$

In other words, all points in A that are not points in B

Examples.

- $\mathbb{Z} \backslash \mathbb{N}=\{\ldots,-2,-1,0\}$
- $\mathbb{R} \backslash \mathbb{Q}=$ the set of irrational numbers
- $\mathbb{R} \backslash[0, \infty)=(-\infty, 0)$
- $\mathbb{R} \backslash(a, b)=(-\infty, a] \cup[b, \infty)$

Complement of A is all elements of S that are not in A :

$$
A^{c}:=S \backslash A:=:\{x \in S: x \notin A\}
$$

Remarks:

- Need to know what S is before we can determine A^{c}
- If not clear better write $S \backslash A$

Example. $(a, \infty)^{c}$ generally understood to be $(-\infty, a]$

Figure: Unions, intersections and complements

In [1]: set_1 = \{'green', 'eggs', 'ham'\}
In [2]: set_2 = \{'red', 'green'\}
In [3]: set_1.intersection(set_2)
Out [3]: \{'green'\}
In [4]: set_1.difference(set_2)
Out [4]: \{'eggs', 'ham'\}
In [5]: set_1.union(set_2)
Out[5]: \{'eggs', 'green', 'ham', 'red'\}

Set operations:

If A and B subsets of S, then

$$
\text { 1. } A \cup B=B \cup A \text { and } A \cap B=B \cap A
$$

2. $(A \cup B)^{c}=B^{c} \cap A^{c}$ and $(A \cap B)^{c}=B^{c} \cup A^{c}$
3. $A \backslash B=A \cap B^{c}$
4. $\left(A^{c}\right)^{c}=A$

The empty set \varnothing is the set containing no elements
If $A \cap B=\varnothing$, then A and B said to be disjoint

Infinite Unions and Intersections

Given a family of sets $K_{\lambda} \subset S$ with $\lambda \in \Lambda$,

$$
\begin{aligned}
& \bigcap_{\lambda \in \Lambda} K_{\lambda}:=\left\{x \in S: x \in K_{\lambda} \text { for all } \lambda \in \Lambda\right\} \\
& \bigcup_{\lambda \in \Lambda} K_{\lambda}:=\left\{x \in S: \text { there exists an } \lambda \in \Lambda \text { such that } x \in K_{\lambda}\right\}
\end{aligned}
$$

- "there exists" means "there exists at least one"

Example. Let $A:=\cap_{n \in \mathbb{N}}(0,1 / n)$

Claim: $A=\varnothing$

Proof: We need to show that A contains no elements
Suppose to the contrary that $x \in A=\cap_{n \in \mathbb{N}}(0,1 / n)$
Then x is a number satisfying $0<x<1 / n$ for all $n \in \mathbb{N}$
No such x exists
Contradiction

Example. For any $a<b$ we have $\cup_{\epsilon>0}[a+\epsilon, b)=(a, b)$

Proof: Pick any $a<b$
Suppose first that $x \in \cup_{\epsilon>0}[a+\epsilon, b)$
This means there exists $\epsilon>0$ such that $a+\epsilon \leq x<b$
Clearly $a<x<b$, and hence $x \in(a, b)$
Conversely, if $a<x<b$, then $\exists \epsilon>0$ s.t. $a+\epsilon \leq x<b$ Hence $x \in \cup_{\epsilon>0}[a+\epsilon, b)$

Ex. Show that $\cup_{n \in \mathbb{N}}(-n, n)=\mathbb{R}$

Let S be any set
Let $K_{\lambda} \subset S$ for all $\lambda \in \Lambda$
de Morgan's laws state that:

$$
\left[\bigcup_{\lambda \in \Lambda} K_{\lambda}\right]^{c}=\bigcap_{\lambda \in \Lambda} K_{\lambda}^{c} \quad \text { and } \quad\left[\bigcap_{\lambda \in \Lambda} K_{\lambda}\right]^{c}=\bigcup_{\lambda \in \Lambda} K_{\lambda}^{c}
$$

Let's prove that $A:=\left(\cup_{\lambda \in \Lambda} K_{\lambda}\right)^{c}=\cap_{\lambda \in \Lambda} K_{\lambda}^{c}=: B$
Suffices to show that $A \subset B$ and $B \subset A$
Let's just do $A \subset B$
Must show that every $x \in A$ is also in B
Fix $x \in A$
Since $x \in A$, it must be that x is not in $\cup_{\lambda \in \Lambda} K_{\lambda}$

$$
\therefore \quad x \text { is not in any } K_{\lambda}
$$

$$
\therefore \quad x \in K_{\lambda}^{c} \text { for each } \lambda \in \Lambda
$$

$$
\therefore \quad x \in \cap_{\lambda \in \Lambda} K_{\lambda}^{c}=: B
$$

[^0]: In [16]: ($2 * * 1000$ / $10 * * 9$) / 31556926 \# In years Out [16]:
 339547840365144349278007955863635707280678989995 899349462539661933596146571733926965255861364854 060286985707326991591901311029244639453805988092 045933072657455119924381235072941549332310199388 301571394569707026437986448403352049168514244509 939816790601568621661265174170019913588941596

