ECON2125/8013
 Lecture 5

John Stachurski

Semester 1, 2015

Announcements

- New tutorial has opened

Tuples

We often organize collections with natural order into "tuples"
A tuple is

- a finite sequence of terms
- denoted using notation such as $\left(a_{1}, a_{2}\right)$ or $\left(x_{1}, x_{2}, x_{3}\right)$

Example. Flip a coin 10 times and let

- 0 represent tails and 1 represent heads

Typical outcome ($1,1,0,0,0,0,1,0,1,1$)
Generic outcome $\left(b_{1}, b_{2}, \ldots, b_{10}\right)$ for $b_{n} \in\{0,1\}$

Cartesian Products

We make collections of tuples using Cartesian products

The Cartesian product of A_{1}, \ldots, A_{N} is the set

$$
A_{1} \times \cdots \times A_{N}:=\left\{\left(a_{1}, \ldots, a_{N}\right): a_{n} \in A_{n} \text { for } n=1, \ldots, N\right\}
$$

Example. $[0,8] \times[0,1]=\left\{\left(x_{1}, x_{2}\right): 0 \leq x_{1} \leq 8,0 \leq x_{2} \leq 1\right\}$

Example. Set of all outcomes from flip experiment is

$$
\begin{aligned}
B & :=\left\{\left(b_{1}, \ldots, b_{10}\right): b_{n} \in\{0,1\} \text { for } n=1, \ldots, 10\right\} \\
& =\{0,1\} \times \cdots \times\{0,1\} \quad(10 \text { products })
\end{aligned}
$$

Example. The vector space \mathbb{R}^{N} is the Cartesian product

$$
\begin{aligned}
\mathbb{R}^{N} & =\mathbb{R} \times \cdots \times \mathbb{R} \quad(N \text { times }) \\
& =\left\{\text { all tuples }\left(x_{1}, \ldots, x_{N}\right) \text { with } x_{n} \in \mathbb{R}\right\}
\end{aligned}
$$

Functions

A function f from set A to set B is a rule that associates to each element of A a uniquely determined element of B

- $f: A \rightarrow B$ means that f is a function from A to B

A is called the domain of f and B is called the codomain

Example. f defined by

$$
f(x)=\exp \left(-x^{2}\right)
$$

is a function from \mathbb{R} to \mathbb{R}

Sometimes we write the whole thing like this

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \mathbb{R} \\
& x \mapsto \exp \left(-x^{2}\right)
\end{aligned}
$$

or this

$$
f: \mathbb{R} \ni x \mapsto \exp \left(-x^{2}\right) \in \mathbb{R}
$$

A function

Not a function

A function

Not a function

Not a function

For each $a \in A, f(a) \in B$ is called the image of a under f

If $f(a)=b$ then a is called a preimage of b under f

A point in B can have one, many or zero preimages

The codomain of a function is not uniquely pinned down

Example. Consider the mapping defined by

$$
f(x)=\exp \left(-x^{2}\right)
$$

Both of these statements are valid:

- f a function from \mathbb{R} to \mathbb{R}
- f a function from \mathbb{R} to $(0, \infty)$

The smallest possible codomain is called the range - next slide

The range of $f: A \rightarrow B$ is the set

$$
\operatorname{rng}(f):=\{b \in B: f(a)=b \text { for some } a \in A\}
$$

Example. Let $f:[-1,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)=0.6 \cos (4 x)+1.4
$$

Then $\operatorname{rng}(f)=[0.8,2.0]$

Example. If $f:[0,1] \rightarrow \mathbb{R}$ is defined by

$$
f(x)=2 x
$$

then $\operatorname{rng}(f)=[0,2]$

Example. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
f(x)=\exp (x)
$$

then $\operatorname{rng}(f)=(0, \infty)$

The composition of $f: A \rightarrow B$ and $g: B \rightarrow C$ is the function $g \circ f$ from A to C defined by

$$
(g \circ f)(a)=g(f(a)) \quad(a \in A)
$$

Onto Functions

A function $f: A \rightarrow B$ is called onto if every element of B is the image under f of at least one point in A.

Equivalently, $\operatorname{rng}(f)=B$

Fact. $f: A \rightarrow B$ is onto if and only if each element of B has at least one preimage under f

Figure：Onto

Figure: Not onto

Figure：Not onto

Example. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=a x^{3}+b x^{2}+c x+d
$$

is onto whenever $a \neq 0$

To see this pick any $y \in \mathbb{R}$
We claim $\exists x \in \mathbb{R}$ such that $f(x)=y$
Equivalent:

$$
\exists x \in \mathbb{R} \text { s.t. } a x^{3}+b x^{2}+c x+d-y=0
$$

Fact. Every cubic equation with $a \neq 0$ has at least one real root

Figure: Cubic functions from \mathbb{R} to \mathbb{R} are always onto

One-to-One Functions

A function $f: A \rightarrow B$ is called one-to-one if distinct elements of A are always mapped into distinct elements of B.

That is, f is one-to-one if

$$
a \in A, a^{\prime} \in A \text { and } a \neq a^{\prime} \Longrightarrow f(a) \neq f\left(a^{\prime}\right)
$$

Equivalently,

$$
f(a)=f\left(a^{\prime}\right) \Longrightarrow a=a^{\prime}
$$

Fact. $f: A \rightarrow B$ is one-to-one if and only if each element of B has at most one preimage under f

Figure: One-to-one

Figure: One-to-one

Figure: Not one-to-one

Bijections

A function that is

1. one-to-one and
2. onto
is called a bijection or one-to-one correspondence

Fact. $f: A \rightarrow B$ is a bijection if and only if each $b \in B$ has one and only one preimage in A

Example. $x \mapsto 2 x$ is a bijection from \mathbb{R} to \mathbb{R}

Example. $k \mapsto-k$ is a bijection from \mathbb{Z} to \mathbb{Z}

Example. $x \mapsto x^{2}$ is not a bijection from \mathbb{R} to \mathbb{R}

Fact. If $f: A \rightarrow B$ a bijection, then there exists a unique function $\phi: B \rightarrow A$ such that

$$
\phi(f(a))=a, \quad \forall a \in A
$$

That function ϕ is called the inverse of f and written f^{-1}

Example. Let

- $f: \mathbb{R} \rightarrow(0, \infty)$ be defined by $f(x)=\exp (x):=e^{x}$
- $\phi:(0, \infty) \rightarrow \mathbb{R}$ be defined by $\phi(x)=\log (x)$

Then $\phi=f^{-1}$ because, for any $a \in \mathbb{R}$,

$$
\phi(f(a))=\log (\exp (a))=a
$$

Fact. If $f: A \rightarrow B$ is one-to-one, then $f: A \rightarrow \operatorname{rng}(f)$ is a bijection

Fact. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be bijections

1. f^{-1} is a bijection and its inverse is f
2. $f^{-1}(f(a))=a$ for all $a \in A$
3. $f\left(f^{-1}(b)\right)=b$ for all $b \in B$
4. $g \circ f$ is a bijection from A to C and $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$

Illustration of $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$

Counting

Counting methods answer common questions such as

- How many arrangements of a sequence?
- How many subsets of a set?

They also address deeper problems such as

- How "large" is a given set?
- Can we compare size of sets even when they are infinite?

Counting Finite Sequences

The key rule is: multiply possibilities

Example. Can travel from Sydney to Tokyo in 3 ways and Tokyo to NYC in 8 ways \Longrightarrow can travel from Sydney to NYC in 24 ways

Example. Number of 10 letter passwords from the lowercase letters a, b, \ldots, z is

$$
26^{10}=141,167,095,653,376
$$

Example. Number of possible distinct outcomes (i, j) from 2 rolls of a dice is

$$
6 \times 6=36
$$

Counting Cartesian Products

Fact. If A_{n} are finite for $n=1, \ldots, N$, then

$$
\#\left(A_{1} \times \cdots \times A_{N}\right)=\left(\# A_{1}\right) \times \cdots \times\left(\# A_{N}\right)
$$

That is, number of possible tuples $=$ product of the number of possibilities for each element

Example. Number of binary sequences of length 10 is

$$
\#[\{0,1\} \times \cdots \times\{0,1\}]=2 \times \cdots \times 2=2^{10}
$$

Cardinality

If a bijection exists between sets A and B they are said to have the same cardinality, and we write $|A|=|B|$

Fact. If $|A|=|B|$ and A and B are finite then A and B have the same number of elements

Ex. Convince yourself this is true

Hence "same cardinality" is analogous to "same size"

- But cardinality applies to infinite sets as well

Fact. If $|A|=|B|$ and $|B|=|C|$ then $|A|=|C|$
Proof:

- Since $|A|=|B|$, exists a bijection $f: A \rightarrow B$
- Since $|B|=|C|$, exists a bijection $g: B \rightarrow C$

Let $h:=g \circ f$
Then h is a bijection from A to C
Hence $|A|=|C|$

A nonempty set A is called finite if

$$
|A|=|\{1,2, \ldots, n\}| \quad \text { for some } \quad n \in \mathbb{N}
$$

Otherwise called infinite

Sets that either

1. are finite, or
2. have the same cardinality as \mathbb{N}
are called countable

- write $|A|=\aleph_{0}$

Example. $-\mathbb{N}:=\{\ldots,-4,-3,-2,-1\}$ is countable

$$
\begin{array}{ccc}
-1 & \leftrightarrow & 1 \\
-2 & \leftrightarrow & 2 \\
-3 & \leftrightarrow & 3 \\
& \vdots & \\
-n & \leftrightarrow & n
\end{array}
$$

Formally: $f(k)=-k$ is a bijection from $-\mathbb{N}$ to \mathbb{N}

Example. $E:=\{2,4, \ldots\}$ is countable

| 2 | \leftrightarrow | 1 |
| ---: | :---: | :---: | :---: |
| 4 | \leftrightarrow | 2 |
| 6 | \leftrightarrow | 3 |
| | \vdots | |
| $2 n$ | \leftrightarrow | n |
| | \vdots | |

Formally: $f(k)=k / 2$ is a bijection from E to \mathbb{N}

Example. $\{100,200,300, \ldots\}$ is countable

100	\leftrightarrow	1
200	\leftrightarrow	2
300	\leftrightarrow	3
	\vdots	
$100 n$	\leftrightarrow	n
	\vdots	

Fact. Nonempty subsets of countable sets are countable

Fact. Finite unions of countable sets are countable

Sketch of proof, for

- A and B countable $\Longrightarrow A \cup B$ countable
- A and B are disjoint and infinite

By assumption, can write $A=\left\{a_{1}, a_{2}, \ldots\right\}$ and $B=\left\{b_{1}, b_{2}, \ldots\right\}$
Now count it like so:

Example. $\mathbb{Z}=\{\ldots,-2,-1\} \cup\{0\} \cup\{1,2, \ldots\}$ is countable

Fact. Finite Cartesian products of countables are countable

Sketch of proof, for

- A and B countable $\Longrightarrow A \times B$ countable
- A and B are disjoint and infinite

Now count like so:

Example. $\mathbb{Z} \times \mathbb{Z}=\{(p, q): p \in \mathbb{Z}, q \in \mathbb{Z}\}$ is countable

Fact. \mathbb{Q} is countable
Proof: By definition

$$
\mathbb{Q}:=\left\{\text { all } \frac{p}{q} \text { where } p \in \mathbb{Z} \text { and } q \in \mathbb{N}\right\}
$$

Consider the function ϕ defined by $\phi(p / q)=(p, q)$

- A one-to-one function from \mathbb{Q} to $\mathbb{Z} \times \mathbb{N}$
- A bijection from \mathbb{Q} to $\operatorname{rng}(\phi)$

Since $\mathbb{Z} \times \mathbb{N}$ is countable, so is $\operatorname{rng}(\phi) \subset \mathbb{Z} \times \mathbb{N}$
Hence \mathbb{Q} is also countable

An example of an uncountable set is all binary sequences

$$
\{0,1\}^{\mathbb{N}}:=\left\{\left(b_{1}, b_{2}, \ldots\right): b_{n} \in\{0,1\} \text { for each } n\right\}
$$

Sketch of proof: If this set were countable then it could be listed as follows:

$$
\begin{aligned}
& 1 \leftrightarrow \\
& a_{1}, a_{2}, a_{3}, a_{4}, \ldots \\
& 2 \leftrightarrow \\
& b_{1}, b_{2}, b_{3}, b_{4}, \ldots \\
& 3 \leftrightarrow \\
& c_{1}, c_{2}, c_{3}, c_{4}, \ldots \\
& 4 \leftrightarrow \\
& d_{1}, d_{2}, d_{3}, d_{4}, \ldots
\end{aligned}
$$

Such a list is never complete: Cantor's diagonalization argument Cardinality of $\{0,1\}^{\mathbb{N}}$ called the power of the continuum

Other sets with the power of the continuum

- \mathbb{R}
- (a, b) for any $a<b$
- $[a, b]$ for any $a<b$
- \mathbb{R}^{N} for any finite $N \in \mathbb{N}$

Continuum hypothesis: Every nonempty subset of \mathbb{R} is either countable or has the power of the continuum

- Not a homework exercise!

Example. \mathbb{R} and $(-1,1)$ have the same cardinality because $x \mapsto 2 \arctan (x) / \pi$ is a bijection from \mathbb{R} to $(-1,1)$

Figure: Same cardinality

