Motivation

/ector Space

Linear Operations

Norms and Distanc

Span

<ロト < 団 > < 臣 > < 臣 > 王 の へ で 1/57

Linear Subspaces

ECON2125/8013

Lecture 6

John Stachurski

Semester 1, 2015

- New tutorial: 3pm Friday CBE TR8
- Course notes apply to today's topic see GitHub

<ロト</th>
 < 臣 > < 臣 > < 臣 > < 臣 > < 2/57</th>

Motivation

Linear Subspaces

New Topic

LINEAR ALGEBRA

<ロト < 団 > < 臣 > < 臣 > 王 の へ で 3/57

<ロト < 母 ト < 王 ト < 王 ト 三 の へ で 4/57

Linear algebra is used to study linear models

Foundational for many disciplines related to economics

- Economic theory
- Econometrics and statistics
- Finance
- Operations research

Motivation	Vector Space	Linear Operations	Norms and Distance	Span	Linear Subspaces
Exar	nple				

Equilibrium in a single market with price p

 $q_d = a + bp$ $q_s = c + dp$ $q_s = q_d$

What price *p* clears the market, and at what quantity $q = q_s = q_d$?

Remark: Here *a*, *b*, *c*, *d* are the model **parameters** or **coefficients**

Treated as fixed for a single computation but might vary between computations to better fit the data

Motivation	Vector Space	Linear Operations	Norms and Distance	Span	Linear Subspaces

Example

Determination of income

$$C = a + b(Y - T)$$
$$E = C + I$$
$$G = T$$
$$Y = E$$

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 つへで 6/57

Solve for Y as a function of I and G

<ロト < 団 > < 臣 > < 臣 > 王 の へ で 7/57

Bigger, more complex systems found in problems related to

- Regression and forecasting
- Portfolio analysis
- Ranking systems
- Etc., etc. any number of applications

Motivation

Linear Subspa

A general system of equations:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1K}x_K = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2K}x_K = b_2$$

$$\vdots$$

$$a_{N1}x_1 + a_{N2}x_2 + \dots + a_{NK}x_K = b_N$$

Typically

- the a_{nm} and b_n are exogenous / given / parameters
- the values x_n are endogenous

Key question

• What values of x_1, \ldots, x_K solve this system?

We often write this in matrix form

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1K} \\ a_{21} & a_{22} & \cdots & a_{2K} \\ \vdots & \vdots & & \vdots \\ a_{N1} & a_{N2} & \cdots & a_{NK} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_K \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_K \end{pmatrix}$$

or

$$Ax = b$$

And we solve it on a computer

<ロ > < 母 > < 喜 > < 喜 > 言 の へ つ 9/57

ivation	Vect	tor Space Linear Operations	Norms and Distance	Span	Linear Subspace
In	[1]:	import numpy as a	np		
In	[2]:	<pre>from scipy.linal;</pre>	g import solve		
In	[3] : :	$\mathbf{A} = \begin{bmatrix} [0, 2, 4], \\ [1, 4, 8], \\ [0, 3, 7] \end{bmatrix}$			
In	[4]:	b = (1, 2, 0)			
In	[5]:	A, b = np.asarra	y(A), np.asarray	(b)	
In Out	[6]: ;[6]:	<pre>solve(A, b) array([0. , 3.</pre>	5, -1.5])		

<ロト < @ ト < E ト < E ト E のへで 10/57

This tells us that the solution is

array([0., 3.5, -1.5])

That is,

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 3.5 \\ -1.5 \end{pmatrix}$$

Hey, this is easy — what do we need to study for?

But now let's try this similar looking problem

Motivation	Vector Space	Linear Operations	Norms and Distance	Span	Linear Subspaces
Tn	[1]: import	numpy as np			
	[1]. Tubere	numpy up np			

In [2]: from scipy.linalg import solve

In [3]: A = [[0, 2, 4], ...: [1, 4, 8], ...: [0, 3, 6]]

In [4]: b = (1, 2, 0)

In [5]: A, b = np.asarray(A), np.asarray(b)

<ロト < 団ト < 三ト < 三ト 三 のへで 12/57

In [6]: solve(A, b)

```
Motivation
```

This is the output that we get

```
LinAlgError Traceback (most recent call last)
<ipython-input-8-4fb5f41eaf7c> in <module>()
----> 1 solve(A, b)
/home/john/anaconda/lib/python2.7/site-packages/scipy/linal
97 return x
98 if info > 0:
---> 99 raise LinAlgError("singular matrix")
100 raise ValueError('illegal value in %d-th argume
LinAlgError: singular matrix
```

What does this mean? How can we fix it?

Moral: We still need to understand the concepts

Linear Subspaces

Vector Space

Recall that $\mathbb{R}^N :=$ set of all *N*-vectors

An *N*-vector \mathbf{x} is a tuple of *N* real numbers:

 $\mathbf{x} = (x_1, \dots, x_N)$ where $x_n \in \mathbb{R}$ for each n

We can also write \mathbf{x} vertically, like so:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix}$$

(ロ)、(部)、(E)、(E)、 E のQで 14/57

Motivation	Vector Space	Linear Operations	Norms and Distance	Span	Linear Subspaces
	1				

Figure : Visualization of vector x in \mathbb{R}^2

Motivation	Vector Space	Linear Operations	Norms and Distance	Span	Linear Subspaces

Figure : Three vectors in ${\rm I\!R}^2$

Motivation	Vector Space	Linear Operations	Norms and Distance	Span	Linear Subspaces

The vector of ones will be denoted ${\bf 1}$

$$\mathbf{1} := \left(egin{array}{c} 1 \\ \vdots \\ 1 \end{array}
ight)$$

Vector of zeros will be denoted ${\bf 0}$

$$\mathbf{0} := \left(\begin{array}{c} 0\\ \vdots\\ 0 \end{array}\right)$$

<ロト < 部ト < 言ト < 言ト 差 の < ? 17/57

Two fundamental algebraic operations:

- 1. Vector addition
- 2. Scalar multiplication
- 1. Sum of $\mathbf{x} \in \mathbb{R}^N$ and $\mathbf{y} \in \mathbb{R}^N$ defined by

$$\mathbf{x} + \mathbf{y} :=: \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix} := \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_N + y_N \end{pmatrix}$$

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の へ C 18/57

Motivation	Vector Space	Linear Operations	Norms and Distance	Span	Linear Subspaces
Exar	nple 1:				

$$\begin{pmatrix}1\\2\\3\\4\end{pmatrix} + \begin{pmatrix}2\\4\\6\\8\end{pmatrix} := \begin{pmatrix}3\\6\\9\\12\end{pmatrix}$$

Example 2:

$$\begin{pmatrix} 1\\2\\3\\4 \end{pmatrix} + \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} := \begin{pmatrix} 2\\3\\4\\5 \end{pmatrix}$$

<ロト < 部ト < 言ト < 言ト 差 の < ? 19/57

Motivation	Vector Space	Linear Operations	Norms and Distance	Span	Linear Subspaces
	^				
			x + y		
		y	- //		
			1		
			1		
			/		
			/		
			/		
			/		
		j j			
		× x			
			、		
	۲				

Figure : Vector addition

2. Scalar product of $\alpha \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^N$ defined by

$$\alpha \mathbf{x} = \alpha \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_N \end{pmatrix} := \begin{pmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_N \end{pmatrix}$$

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の Q C 21/57

Motivation	Vector Space	Linear Operations	Norms and Distance	Span	Linear Subspaces
_					

Example 1:

$$0.5 \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} := \begin{pmatrix} 0.5 \\ 1.0 \\ 1.5 \\ 2.0 \end{pmatrix}$$

Example 2:

$$-1\left(\begin{array}{c}1\\2\\3\\4\end{array}\right):=\left(\begin{array}{c}-1\\-2\\-3\\-4\end{array}\right)$$

<ロト < 戸 ト < 王 ト < 王 ト 王 · ク へ C 22/57

Figure : Scalar multiplication

Motivation	Vector Space	Linear Operations	Norms and Distance	Span	Linear Subspaces

Subtraction performed element by element, analogous to addition

$$\mathbf{x} - \mathbf{y} := \begin{pmatrix} x_1 - y_1 \\ x_2 - y_2 \\ \vdots \\ x_N - y_N \end{pmatrix}$$

Def can be given in terms of addition and scalar multiplication:

$$\mathbf{x} - \mathbf{y} := \mathbf{x} + (-1)\mathbf{y}$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ E のへで 24/57

<ロト < 母ト < 臣ト < 臣ト 王 のへで 25/57

Incidentally, most high level numerical libraries treat vector addition and scalar multiplication in the same way — elementwise

In [1]: import numpy as np In [2]: x = np.array((2, 4, 6))In [3]: y = np.array((10, 10, 10))In [4]: x + y # Vector addition Out[4]: array([12, 14, 16]) In [6]: 2 * x # Scalar multiplication Out[6]: array([4, 8, 12])

<ロト < @ ト < 三 ト < 三 ト 三 の へ C 26/57

Motivation	Vector Space	Linear Operations	Norms and Distance	Span	Linear Subspaces

A linear combination of vectors $\mathbf{x}_1, \ldots, \mathbf{x}_K$ in \mathbb{R}^N is a vector

$$\mathbf{y} = \sum_{k=1}^{K} \alpha_k \mathbf{x}_k = \alpha_1 \mathbf{x}_1 + \dots + \alpha_K \mathbf{x}_K$$

where $\alpha_1, \ldots, \alpha_K$ are scalars

Example.

$$0.5 \begin{pmatrix} 6.0 \\ 2.0 \\ 8.0 \end{pmatrix} + 3.0 \begin{pmatrix} 0 \\ 1.0 \\ -1.0 \end{pmatrix} = \begin{pmatrix} 3.0 \\ 4.0 \\ 1.0 \end{pmatrix}$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ E の Q @ 27/57

Linear Subspace

Inner Product

The inner product of two vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^N is

$$\mathbf{x}'\mathbf{y} := \sum_{n=1}^N x_n y_n$$

Example: $\mathbf{x} = (2,3)$ and $\mathbf{y} = (-1,1)$ implies that

$$\mathbf{x}'\mathbf{y} = \mathbf{2} \times (-1) + \mathbf{3} \times \mathbf{1} = \mathbf{1}$$

Example: $\mathbf{x} = (1/N)\mathbf{1}$ and $\mathbf{y} = (y_1, \dots, y_N)$ implies

$$\mathbf{x}'\mathbf{y} = \frac{1}{N}\sum_{n=1}^{N}y_n$$

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の へ C 28/57

Motivation Vector Space Linear Operations Norms and Distance	Span	Linear Subspaces

In [1]: import numpy as np

In [2]: x = np.array((1, 2, 3, 4))

In [3]: y = np.array((2, 4, 6, 8))

In [6]: np.sum(x * y) # Inner product
Out[6]: 60

Fact. For any $\alpha, \beta \in \mathbb{R}$ and any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^N$, the following statements are true:

1.
$$\mathbf{x}'\mathbf{y} = \mathbf{y}'\mathbf{x}$$

2. $(\alpha \mathbf{x})'(\beta \mathbf{y}) = \alpha\beta(\mathbf{x}'\mathbf{y})$
3. $\mathbf{x}'(\mathbf{y} + \mathbf{z}) = \mathbf{x}'\mathbf{y} + \mathbf{x}'\mathbf{z}$

For example, item 2 is true because

$$(\alpha \mathbf{x})'(\beta \mathbf{y}) = \sum_{n=1}^{N} \alpha x_n \beta y_n = \alpha \beta \sum_{n=1}^{N} x_n y_n = \alpha \beta(\mathbf{x}' \mathbf{y})$$

Ex. Use above rules to show that $(\alpha y + \beta z)'x = \alpha x'y + \beta x'z$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The next result is a generalization

Fact. Inner products of linear combinations satisfy

$$\left(\sum_{k=1}^{K} \alpha_k \mathbf{x}_k\right)' \left(\sum_{j=1}^{J} \beta_j \mathbf{y}_j\right) = \sum_{k=1}^{K} \sum_{j=1}^{J} \alpha_k \beta_j \mathbf{x}'_k \mathbf{y}_j$$

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の Q C 31/57

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · ♡ Q ♡ 32/57

Norms and Distance

The (Euclidean) norm of $\mathbf{x} \in \mathbb{R}^N$ is defined as

$$\|\mathbf{x}\| := \sqrt{\mathbf{x}'\mathbf{x}} = \left(\sum_{n=1}^N x_n^2\right)^{1/2}$$

Interpretation:

- $\|x\|$ represents the "length" of x
- $\|x-y\|$ represents distance between x and y

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の Q C 33/57

Motivation

$\|x-y\|$ represents distance between x and y

<ロト < 部ト < Eト < Eト E のへで 34/57

Fact. For any $\alpha \in \mathbb{R}$ and any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^N$, the following statements are true:

(ロ)、(部)、(E)、(E)、 E) の(で 35/57)

1.
$$\|\mathbf{x}\| \ge 0$$
 and $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$

$$2. \|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$$

- 3. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ (triangle inequality)
- 4. $|\mathbf{x}'\mathbf{y}| \le \|\mathbf{x}\| \|\mathbf{y}\|$ (Cauchy-Schwarz inequality)

For example, let's show that $\|\mathbf{x}\| = 0 \iff \mathbf{x} = \mathbf{0}$

First let's assume that $\|\mathbf{x}\| = 0$ and show $\mathbf{x} = \mathbf{0}$ Since $\|\mathbf{x}\| = 0$ we have $\|\mathbf{x}\|^2 = 0$ and hence $\sum_{n=1}^{N} x_n^2 = 0$ That is $x_n = 0$ for all n, or, equivalently, $\mathbf{x} = \mathbf{0}$

Next let's assume that $\mathbf{x} = \mathbf{0}$ and show $\|\mathbf{x}\| = 0$

This is immediate from the definition of the norm

Fact. If $\mathbf{x} \in \mathbb{R}^N$ is nonzero, then the solution to the optimization problem

$$\max_{\mathbf{y}} \mathbf{x}' \mathbf{y}$$
 subject to $\mathbf{y} \in \mathbb{R}^N$ and $\|\mathbf{y}\| = 1$

is $\hat{\mathbf{x}} := \mathbf{x} / \|\mathbf{x}\|$

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の Q C 37/57

Motivation Vector Space Linear Operations Norms and Distance Span Linear Subspaces

Proof: Fix nonzero $\mathbf{x} \in \mathbb{R}^N$ Let $\hat{\mathbf{x}} := \mathbf{x}/\|\mathbf{x}\| := \alpha \mathbf{x}$ when $\alpha := 1/\|\mathbf{x}\|$ Evidently $\|\hat{\mathbf{x}}\| = 1$ Pick any other $\mathbf{y} \in \mathbb{R}^N$ satisfying $\|\mathbf{y}\| = 1$ The Cauchy-Schwarz inequality yields

$$|\mathbf{y}'\mathbf{x} \le |\mathbf{y}'\mathbf{x}| \le \|\mathbf{y}\|\|\mathbf{x}\| = \|\mathbf{x}\| = rac{\mathbf{x}'\mathbf{x}}{\|\mathbf{x}\|} = \hat{\mathbf{x}}'\mathbf{x}$$

<ロト < 回 ト < 三 ト < 三 ト 三 · の へ C 38/57

Hence \hat{x} is the maximizer, as claimed

Let $X \subset \mathbb{R}^N$ be any nonempty set

Set of all possible linear combinations of elements of X is called the **span** of X, denoted by span(X)

For finite $X := \{\mathbf{x}_1, \dots, \mathbf{x}_K\}$ the span can be expressed as

$$\operatorname{span}(X) := \left\{ \text{ all } \sum_{k=1}^{K} \alpha_k \mathbf{x}_k \text{ such that } (\alpha_1, \dots, \alpha_K) \in \mathbb{R}^K \right\}$$

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の へ C 39/57

We are mainly interested in the span of finite sets...

<ロト < 母 ト < 臣 ト < 臣 ト 臣 の へ C 40/57

Example

Let's start with the span of a singleton

Let
$$X = {\mathbf{1}} \subset \mathbb{R}^2$$
, where $\mathbf{1} := (1, 1)$

The span of X is all vectors of the form

$$lpha {f 1} = \left(egin{array}{c} lpha \ lpha \end{array}
ight) \hspace{0.5cm} ext{with} \hspace{0.5cm} lpha \in {\mathbb R}$$

Constitutes a line in the plane that passes through

- the vector **1** (set $\alpha = 1$)
- the origin **0** (set $\alpha = 0$)

Figure : The span of $\mathbf{1} := (1, 1)$ in \mathbb{R}^2

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example

Let
$$\mathbf{x}_1 = (3, 4, 2)$$
 and let $\mathbf{x}_2 = (3, -4, 0.4)$

By definition, the span is all vectors of the form

$$\mathbf{y} = lpha \left(egin{array}{c} 3 \ 4 \ 2 \end{array}
ight) + eta \left(egin{array}{c} 3 \ -4 \ 0.4 \end{array}
ight) \quad ext{where} \quad lpha, eta \in \mathbb{R}$$

It turns out to be a plane that passes through

- the vector x₁
- the vector x₂
- the origin **0**

Figure : Span of x_1, x_2

<ロト < 合ト < 言ト < 言ト ミ シ へ へ 43/57

Span

Fact. If $X \subset Y$, then span $(X) \subset$ span(Y)

To see this, pick any nonempty $X \subset Y \subset \mathbb{R}^N$

Letting $\mathbf{z} \in \operatorname{span}(X)$, we have

$$\mathbf{z} = \sum_{k=1}^{K} \alpha_k \mathbf{x}_k$$
 for some $\mathbf{x}_1, \dots, \mathbf{x}_K \in X, \ \alpha_1, \dots, \alpha_K \in \mathbb{R}$

Since $X \subset Y$, each \mathbf{x}_k is also in Y, giving us

$$\mathbf{z} = \sum_{k=1}^{K} \alpha_k \mathbf{x}_k$$
 for some $\mathbf{x}_1, \dots, \mathbf{x}_K \in Y, \ \alpha_1, \dots, \alpha_K \in \mathbb{R}$

Hence $\mathbf{z} \in \operatorname{span}(Y)$

Let Y be any subset of \mathbb{R}^N , and let $X := \{\mathbf{x}_1, \dots, \mathbf{x}_K\}$

If $Y \subset \operatorname{span}(X)$, we say that the vectors in X span the set Y

Alternatively, we say that X is a **spanning set** for Y

A nice situation: Y is large but X is small

 \implies large set Y "described" by the small number of vectors in X

Motivation	Vector Space	Linear Operations	Norms and Distance	Span	Linear Subspace

Example

Consider the vectors $\{\mathbf{e}_1, \dots, \mathbf{e}_N\} \subset \mathbb{R}^N$, where

$$\mathbf{e}_1 := \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}, \quad \mathbf{e}_2 := \begin{pmatrix} 0\\1\\\vdots\\0 \end{pmatrix}, \cdots, \mathbf{e}_N := \begin{pmatrix} 0\\0\\\vdots\\1 \end{pmatrix}$$

That is, \mathbf{e}_n has all zeros except for a 1 as the *n*-th element

Vectors $\mathbf{e}_1, \ldots, \mathbf{e}_N$ called the **canonical basis vectors** of \mathbb{R}^N

Motivation	Vector Space	Linear Operations	Norms and Distance	Span	Linear Subspaces

$$e_2 = (0, 1)$$

 $e_1 = (1, 0)$

Figure : Canonical basis vectors in \mathbb{R}^2

<ロト < 部ト < 言ト < 言ト 言 の < ? 47/57

Fact. The span of $\{\mathbf{e}_1, \dots, \mathbf{e}_N\}$ is equal to all of \mathbb{R}^N

Proof for N = 2:

Pick any $\mathbf{y} \in \mathbb{R}^2$

We have

$$\mathbf{y} := \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} y_1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ y_1 \end{pmatrix}$$
$$= y_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2$$

Thus, $y \in \text{span}\{e_1, e_2\}$

Since y arbitrary, we have shown that $\text{span}\{e_1,e_2\}=\mathbb{R}^2$

Motivation	Vector Space	Linear Operations	Norms and Distance	Span	Linear Subspaces

Figure : Canonical basis vectors in \mathbb{R}^2

<ロト < 部ト < Eト < Eト E のへで 49/57

Example. Consider the set

$$P := \{ (x_1, x_2, 0) \in \mathbb{R}^3 : x_1, x_2 \in \mathbb{R} \}$$

Graphically, P = flat plane in \mathbb{R}^3 , where height coordinate = 0

Let \mathbf{e}_1 and \mathbf{e}_2 be the canonical basis vectors in \mathbb{R}^3 <u>Claim</u>: span{ $\mathbf{e}_1, \mathbf{e}_2$ } = P Proof:

Let $\mathbf{x} = (x_1, x_2, 0)$ be any element of P

We can write \mathbf{x} as

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + x_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$$

In other words, $P \subset \operatorname{span}\{\mathbf{e}_1, \mathbf{e}_2\}$

Conversely (check it) we have $span\{e_1, e_2\} \subset P$

<ロト < @ ト < E ト < E ト E のへで 52/57

A nonempty $S \subset \mathbb{R}^N$ called a **linear subspace** of \mathbb{R}^N if

$$\mathbf{x}, \mathbf{y} \in S$$
 and $\alpha, \beta \in \mathbb{R} \implies \alpha \mathbf{x} + \beta \mathbf{y} \in S$

In other words, $S \subset \mathbb{R}^N$ is "closed" under vector addition and scalar multiplication

Note: Sometimes we just say subspace...

Example. \mathbb{R}^N itself is a linear subspace of \mathbb{R}^N

Example

Fix
$$\mathbf{a} \in \mathbb{R}^N$$
 and let $A := \{\mathbf{x} \in \mathbb{R}^N : \mathbf{a}'\mathbf{x} = 0\}$

Fact. The set A is a linear subspace of \mathbb{R}^N

Proof: Let $\mathbf{x}, \mathbf{y} \in A$ and let $\alpha, \beta \in \mathbb{R}$ We must show that $\mathbf{z} := \alpha \mathbf{x} + \beta \mathbf{y} \in A$ Equivalently, that $\mathbf{a}'\mathbf{z} = 0$

True because

$$\mathbf{a}'\mathbf{z} = \mathbf{a}'(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha \mathbf{a}'\mathbf{x} + \beta \mathbf{a}'\mathbf{y} = 0 + 0 = 0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(ロ)、(部)、(E)、(E)、 E) の(で 55/57)

Fact. If Z is a nonempty subset of \mathbb{R}^N , then span(Z) is a linear subspace

Proof: If $\mathbf{x}, \mathbf{y} \in \operatorname{span}(Z)$, then \exists vectors \mathbf{z}_k in Z and scalars γ_k and δ_k such that

$$\mathbf{x} = \sum_{k=1}^{K} \gamma_k \mathbf{z}_k \text{ and } \mathbf{y} = \sum_{k=1}^{K} \delta_k \mathbf{z}_k$$

$$\therefore \quad \alpha \mathbf{x} = \sum_{k=1}^{K} \alpha \gamma_k \mathbf{z}_k \text{ and } \beta \mathbf{y} = \sum_{k=1}^{K} \beta \delta_k \mathbf{z}_k$$

$$\therefore \quad \alpha \mathbf{x} + \beta \mathbf{y} = \sum_{k=1}^{K} (\alpha \gamma_k + \beta \delta_k) \mathbf{z}_k$$

This vector clearly lies in span(Z)

Fact. If S and S' are two linear subspaces of \mathbb{R}^N , then $S \cap S'$ is also a linear subspace of \mathbb{R}^N .

Proof: Let S and S' be two linear subspaces of \mathbb{R}^N

Fix $\mathbf{x}, \mathbf{y} \in S \cap S'$ and $\alpha, \beta \in \mathbb{R}$

We claim that $\mathbf{z} := \alpha \mathbf{x} + \beta \mathbf{y} \in S \cap S'$

• Since $\mathbf{x}, \mathbf{y} \in S$ and S is a linear subspace we have $\mathbf{z} \in S$

• Since $\mathbf{x}, \mathbf{y} \in S'$ and S' is a linear subspace we have $\mathbf{z} \in S'$

Therefore $\mathbf{z} \in S \cap S'$

<ロト < @ ト < 三 ト < 三 ト 三 の へ C 56/57

<ロト < @ ト < 三 ト < 三 ト 三 の へ C 57/57

Other examples of linear subspaces

- The singleton $\{\mathbf{0}\}$ in \mathbb{R}^N
- Lines through the origin in \mathbb{R}^2 and \mathbb{R}^3
- Planes through the origin in \mathbb{R}^3

Ex. Let S be a linear subspace of \mathbb{R}^N . Show that

- 1. $\mathbf{0} \in S$ 2. If $X \subset S$, then span $(X) \subset S$
- 3. $\operatorname{span}(S) = S$