ECON2125/8013
 Lecture 6

John Stachurski

Semester 1, 2015

Announcements

- New tutorial: 3pm Friday CBE TR8
- Course notes apply to today's topic - see GitHub

New Topic

LINEAR ALGEBRA

Motivation

Linear algebra is used to study linear models

Foundational for many disciplines related to economics

- Economic theory
- Econometrics and statistics
- Finance
- Operations research

Example

Equilibrium in a single market with price p

$$
\begin{aligned}
q_{d} & =a+b p \\
q_{s} & =c+d p \\
q_{s} & =q_{d}
\end{aligned}
$$

What price p clears the market, and at what quantity $q=q_{s}=q_{d}$?
Remark: Here a, b, c, d are the model parameters or coefficients
Treated as fixed for a single computation but might vary between computations to better fit the data

Example

Determination of income

$$
\begin{aligned}
& C=a+b(Y-T) \\
& E=C+I \\
& G=T \\
& Y=E
\end{aligned}
$$

Solve for Y as a function of I and G

Bigger, more complex systems found in problems related to

- Regression and forecasting
- Portfolio analysis
- Ranking systems
- Etc., etc. - any number of applications

A general system of equations:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 K} x_{K}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 K} x_{K}=b_{2} \\
\vdots \\
a_{N 1} x_{1}+a_{N 2} x_{2}+\cdots+a_{N K} x_{K}=b_{N}
\end{gathered}
$$

Typically

- the $a_{n m}$ and b_{n} are exogenous / given / parameters
- the values x_{n} are endogenous

Key question

- What values of x_{1}, \ldots, x_{K} solve this system?

We often write this in matrix form

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 K} \\
a_{21} & a_{22} & \cdots & a_{2 K} \\
\vdots & \vdots & & \vdots \\
a_{N 1} & a_{N 2} & \cdots & a_{N K}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{K}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{K}
\end{array}\right)
$$

or

$$
\mathbf{A x}=\mathbf{b}
$$

And we solve it on a computer

In [1]: import numpy as np
In [2]: from scipy.linalg import solve
In $[3]: \mathrm{A}=[[0,2,4]$,
...: [1, 4, 8],
$\ldots: \quad[0,3,7]]$

In [4]: b = (1, 2, 0)
In [5]: A, b = np.asarray(A), np.asarray(b)
In [6]: solve(A, b)
Out[6]: array([0. , 3.5, -1.5])

This tells us that the solution is

$$
\operatorname{array}([0 ., 3.5,-1.5])
$$

That is,

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
0 \\
3.5 \\
-1.5
\end{array}\right)
$$

Hey, this is easy - what do we need to study for?

But now let's try this similar looking problem

In [1]: import numpy as np

In [2]: from scipy.linalg import solve

In [3]: $\mathrm{A}=[[0,2,4]$,
...: [1, 4, 8],
$\ldots: \quad[0,3,6]]$

In [4]: b = (1, 2, 0)

In [5]: A, b = np.asarray(A), np.asarray(b)
In [6]: solve(A, b)

This is the output that we get
LinAlgError Traceback (most recent call last)
<ipython-input-8-4fb5f41eaf7c> in <module>()
----> 1 solve(A, b)
/home/john/anaconda/lib/python2.7/site-packages/scipy/lina

97	return x
98	if info $>0:$
99	raise LinAlgError("singular matrix")
100	raise ValueError('illegal value in \%d-th argume

LinAlgError: singular matrix

What does this mean? How can we fix it?
Moral: We still need to understand the concepts

Vector Space

Recall that $\mathbb{R}^{N}:=$ set of all N-vectors

An N-vector \mathbf{x} is a tuple of N real numbers:

$$
\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right) \quad \text { where } \quad x_{n} \in \mathbb{R} \text { for each } n
$$

We can also write \mathbf{x} vertically, like so:

$$
\mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right)
$$

Figure: Visualization of vector \mathbf{x} in \mathbb{R}^{2}

Figure: Three vectors in \mathbb{R}^{2}

The vector of ones will be denoted 1

$$
\mathbf{1}:=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)
$$

Vector of zeros will be denoted $\mathbf{0}$

$$
\mathbf{0}:=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right)
$$

Linear Operations

Two fundamental algebraic operations:

1. Vector addition
2. Scalar multiplication
3. Sum of $\mathbf{x} \in \mathbb{R}^{N}$ and $\mathbf{y} \in \mathbb{R}^{N}$ defined by

$$
\mathbf{x}+\mathbf{y}:=:\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right)+\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right):=\left(\begin{array}{c}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
\vdots \\
x_{N}+y_{N}
\end{array}\right)
$$

Example 1:

$$
\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right)+\left(\begin{array}{l}
2 \\
4 \\
6 \\
8
\end{array}\right):=\left(\begin{array}{c}
3 \\
6 \\
9 \\
12
\end{array}\right)
$$

Example 2:

$$
\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right)+\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right):=\left(\begin{array}{l}
2 \\
3 \\
4 \\
5
\end{array}\right)
$$

Figure: Vector addition
2. Scalar product of $\alpha \in \mathbb{R}$ and $\mathbf{x} \in \mathbb{R}^{N}$ defined by

$$
\alpha \mathbf{x}=\alpha\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right):=\left(\begin{array}{c}
\alpha x_{1} \\
\alpha x_{2} \\
\vdots \\
\alpha x_{N}
\end{array}\right)
$$

Example 1:

$$
0.5\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right):=\left(\begin{array}{l}
0.5 \\
1.0 \\
1.5 \\
2.0
\end{array}\right)
$$

Example 2:

$$
-1\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right):=\left(\begin{array}{l}
-1 \\
-2 \\
-3 \\
-4
\end{array}\right)
$$

Figure: Scalar multiplication

Subtraction performed element by element, analogous to addition

$$
\mathbf{x}-\mathbf{y}:=\left(\begin{array}{c}
x_{1}-y_{1} \\
x_{2}-y_{2} \\
\vdots \\
x_{N}-y_{N}
\end{array}\right)
$$

Def can be given in terms of addition and scalar multiplication:

$$
\mathbf{x}-\mathbf{y}:=\mathbf{x}+(-1) \mathbf{y}
$$

Figure: Difference between vectors

Incidentally, most high level numerical libraries treat vector addition and scalar multiplication in the same way - elementwise

```
In [1]: import numpy as np
In [2]: \(x=n p \cdot \operatorname{array}((2,4,6))\)
In [3]: \(y=n p \cdot \operatorname{array}((10,10,10))\)
In [4]: \(\mathrm{x}+\mathrm{y}\) \# Vector addition
Out [4]: \(\operatorname{array}([12,14,16])\)
In [6]: 2 * x \# Scalar multiplication
Out [6]: \(\operatorname{array}([4,8,12])\)
```

A linear combination of vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}$ in \mathbb{R}^{N} is a vector

$$
\mathbf{y}=\sum_{k=1}^{K} \alpha_{k} \mathbf{x}_{k}=\alpha_{1} \mathbf{x}_{1}+\cdots+\alpha_{K} \mathbf{x}_{K}
$$

where $\alpha_{1}, \ldots, \alpha_{K}$ are scalars

Example.

$$
0.5\left(\begin{array}{l}
6.0 \\
2.0 \\
8.0
\end{array}\right)+3.0\left(\begin{array}{c}
0 \\
1.0 \\
-1.0
\end{array}\right)=\left(\begin{array}{l}
3.0 \\
4.0 \\
1.0
\end{array}\right)
$$

Inner Product

The inner product of two vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^{N} is

$$
\mathbf{x}^{\prime} \mathbf{y}:=\sum_{n=1}^{N} x_{n} y_{n}
$$

Example: $\mathbf{x}=(2,3)$ and $\mathbf{y}=(-1,1)$ implies that

$$
\mathbf{x}^{\prime} \mathbf{y}=2 \times(-1)+3 \times 1=1
$$

Example: $\mathbf{x}=(1 / N) \mathbf{1}$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{N}\right)$ implies

$$
\mathbf{x}^{\prime} \mathbf{y}=\frac{1}{N} \sum_{n=1}^{N} y_{n}
$$

In [1]: import numpy as np
In [2]: x = np.array ((1, 2, 3, 4))
In [3]: y = np.array ($(2,4,6,8))$

In [6]: np.sum(x * y) \# Inner product
Out[6]: 60

Fact. For any $\alpha, \beta \in \mathbb{R}$ and any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{N}$, the following statements are true:

$$
\begin{aligned}
& \text { 1. } \mathbf{x}^{\prime} \mathbf{y}=\mathbf{y}^{\prime} \mathbf{x} \\
& \text { 2. }(\alpha \mathbf{x})^{\prime}(\beta \mathbf{y})=\alpha \beta\left(\mathbf{x}^{\prime} \mathbf{y}\right) \\
& \text { 3. } \mathbf{x}^{\prime}(\mathbf{y}+\mathbf{z})=\mathbf{x}^{\prime} \mathbf{y}+\mathbf{x}^{\prime} \mathbf{z}
\end{aligned}
$$

For example, item 2 is true because

$$
(\alpha \mathbf{x})^{\prime}(\beta \mathbf{y})=\sum_{n=1}^{N} \alpha x_{n} \beta y_{n}=\alpha \beta \sum_{n=1}^{N} x_{n} y_{n}=\alpha \beta\left(\mathbf{x}^{\prime} \mathbf{y}\right)
$$

Ex. Use above rules to show that $(\alpha \mathbf{y}+\beta \mathbf{z})^{\prime} \mathbf{x}=\alpha \mathbf{x}^{\prime} \mathbf{y}+\beta \mathbf{x}^{\prime} \mathbf{z}$

The next result is a generalization

Fact. Inner products of linear combinations satisfy

$$
\left(\sum_{k=1}^{K} \alpha_{k} \mathbf{x}_{k}\right)^{\prime}\left(\sum_{j=1}^{J} \beta_{j} \mathbf{y}_{j}\right)=\sum_{k=1}^{K} \sum_{j=1}^{J} \alpha_{k} \beta_{j} \mathbf{x}_{k}^{\prime} \mathbf{y}_{j}
$$

Norms and Distance

The (Euclidean) norm of $\mathbf{x} \in \mathbb{R}^{N}$ is defined as

$$
\|\mathbf{x}\|:=\sqrt{\mathbf{x}^{\prime} \mathbf{x}}=\left(\sum_{n=1}^{N} x_{n}^{2}\right)^{1 / 2}
$$

Interpretation:

- $\|\mathbf{x}\|$ represents the "length" of \mathbf{x}
- $\|\mathbf{x}-\mathbf{y}\|$ represents distance between \mathbf{x} and \mathbf{y}

Figure: Length of red line $=\sqrt{x_{1}^{2}+x_{2}^{2}}=:\|\mathbf{x}\|$
$\|\mathbf{x}-\mathbf{y}\|$ represents distance between \mathbf{x} and \mathbf{y}

Fact. For any $\alpha \in \mathbb{R}$ and any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{N}$, the following statements are true:

1. $\|\mathbf{x}\| \geq 0$ and $\|\mathbf{x}\|=0$ if and only if $\mathbf{x}=\mathbf{0}$
2. $\|\alpha \mathbf{x}\|=|\alpha|\|\mathbf{x}\|$
3. $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$ (triangle inequality)
4. $\left|\mathbf{x}^{\prime} \mathbf{y}\right| \leq\|\mathbf{x}\|\|\mathbf{y}\|$ (Cauchy-Schwarz inequality)

For example, let's show that $\|\mathbf{x}\|=0 \Longleftrightarrow \mathbf{x}=\mathbf{0}$

First let's assume that $\|\mathbf{x}\|=0$ and show $\mathbf{x}=\mathbf{0}$
Since $\|\mathbf{x}\|=0$ we have $\|\mathbf{x}\|^{2}=0$ and hence $\sum_{n=1}^{N} x_{n}^{2}=0$
That is $x_{n}=0$ for all n, or, equivalently, $\mathbf{x}=\mathbf{0}$

Next let's assume that $\mathbf{x}=\mathbf{0}$ and show $\|\mathbf{x}\|=0$
This is immediate from the definition of the norm

Fact. If $\mathbf{x} \in \mathbb{R}^{N}$ is nonzero, then the solution to the optimization problem

$$
\max _{\mathbf{y}} \mathbf{x}^{\prime} \mathbf{y} \quad \text { subject to } \quad \mathbf{y} \in \mathbb{R}^{N} \text { and }\|\mathbf{y}\|=1
$$

is $\hat{\mathbf{x}}:=\mathbf{x} /\|\mathbf{x}\|$

Proof: Fix nonzero $\mathbf{x} \in \mathbb{R}^{N}$
Let $\hat{\mathbf{x}}:=\mathbf{x} /\|\mathbf{x}\|:=\alpha \mathbf{x}$ when $\alpha:=1 /\|\mathbf{x}\|$
Evidently $\|\hat{\mathbf{x}}\|=1$
Pick any other $\mathbf{y} \in \mathbb{R}^{N}$ satisfying $\|\mathbf{y}\|=1$
The Cauchy-Schwarz inequality yields

$$
\mathbf{y}^{\prime} \mathbf{x} \leq\left|\mathbf{y}^{\prime} \mathbf{x}\right| \leq\|\mathbf{y}\|\|\mathbf{x}\|=\|\mathbf{x}\|=\frac{\mathbf{x}^{\prime} \mathbf{x}}{\|\mathbf{x}\|}=\hat{\mathbf{x}}^{\prime} \mathbf{x}
$$

Hence $\hat{\mathbf{x}}$ is the maximizer, as claimed

Span

Let $X \subset \mathbb{R}^{N}$ be any nonempty set

Set of all possible linear combinations of elements of X is called the span of X, denoted by $\operatorname{span}(X)$

For finite $X:=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}\right\}$ the span can be expressed as

$$
\operatorname{span}(X):=\left\{\text { all } \sum_{k=1}^{K} \alpha_{k} \mathbf{x}_{k} \text { such that }\left(\alpha_{1}, \ldots, \alpha_{K}\right) \in \mathbb{R}^{K}\right\}
$$

We are mainly interested in the span of finite sets...

Example

Let's start with the span of a singleton
Let $X=\{\mathbf{1}\} \subset \mathbb{R}^{2}$, where $\mathbf{1}:=(1,1)$
The span of X is all vectors of the form

$$
\alpha \mathbf{1}=\binom{\alpha}{\alpha} \quad \text { with } \quad \alpha \in \mathbb{R}
$$

Constitutes a line in the plane that passes through

- the vector $1(\operatorname{set} \alpha=1)$
- the origin 0 (set $\alpha=0$)

Figure : The span of $\mathbf{1}:=(1,1)$ in \mathbb{R}^{2}

Example
Let $\mathbf{x}_{1}=(3,4,2)$ and let $\mathbf{x}_{2}=(3,-4,0.4)$
By definition, the span is all vectors of the form

$$
\mathbf{y}=\alpha\left(\begin{array}{l}
3 \\
4 \\
2
\end{array}\right)+\beta\left(\begin{array}{c}
3 \\
-4 \\
0.4
\end{array}\right) \quad \text { where } \quad \alpha, \beta \in \mathbb{R}
$$

It turns out to be a plane that passes through

- the vector \mathbf{x}_{1}
- the vector \mathbf{x}_{2}
- the origin $\mathbf{0}$

Figure: Span of $\mathbf{x}_{1}, \mathbf{x}_{2}$

Fact. If $X \subset Y$, then $\operatorname{span}(X) \subset \operatorname{span}(Y)$
To see this, pick any nonempty $X \subset Y \subset \mathbb{R}^{N}$
Letting $\mathbf{z} \in \operatorname{span}(X)$, we have

$$
\mathbf{z}=\sum_{k=1}^{K} \alpha_{k} \mathbf{x}_{k} \text { for some } \mathbf{x}_{1}, \ldots, \mathbf{x}_{K} \in X, \alpha_{1}, \ldots, \alpha_{K} \in \mathbb{R}
$$

Since $X \subset Y$, each \mathbf{x}_{k} is also in Y, giving us

$$
\mathbf{z}=\sum_{k=1}^{K} \alpha_{k} \mathbf{x}_{k} \text { for some } \mathbf{x}_{1}, \ldots, \mathbf{x}_{K} \in Y, \alpha_{1}, \ldots, \alpha_{K} \in \mathbb{R}
$$

Hence $\mathbf{z} \in \operatorname{span}(Y)$

Let Y be any subset of \mathbb{R}^{N}, and let $X:=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}\right\}$

If $Y \subset \operatorname{span}(X)$, we say that the vectors in X span the set Y

Alternatively, we say that X is a spanning set for Y

A nice situation: Y is large but X is small
\Longrightarrow large set Y "described" by the small number of vectors in X

Example

Consider the vectors $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{N}\right\} \subset \mathbb{R}^{N}$, where

$$
\mathbf{e}_{1}:=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right), \quad \mathbf{e}_{2}:=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right), \cdots, \mathbf{e}_{N}:=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right)
$$

That is, \mathbf{e}_{n} has all zeros except for a 1 as the n-th element

Vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{N}$ called the canonical basis vectors of \mathbb{R}^{N}

Figure: Canonical basis vectors in \mathbb{R}^{2}

Fact. The span of $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{N}\right\}$ is equal to all of \mathbb{R}^{N}
Proof for $N=2$:
Pick any $\mathbf{y} \in \mathbb{R}^{2}$
We have

$$
\begin{aligned}
\mathbf{y}:=\binom{y_{1}}{y_{2}}=\binom{y_{1}}{0} & +\binom{0}{y_{1}} \\
& =y_{1}\binom{1}{0}+y_{2}\binom{0}{1}=y_{1} \mathbf{e}_{1}+y_{2} \mathbf{e}_{2}
\end{aligned}
$$

Thus, $\mathbf{y} \in \operatorname{span}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$
Since \mathbf{y} arbitrary, we have shown that $\operatorname{span}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}=\mathbb{R}^{2}$

Figure: Canonical basis vectors in \mathbb{R}^{2}

Example. Consider the set

$$
P:=\left\{\left(x_{1}, x_{2}, 0\right) \in \mathbb{R}^{3}: x_{1}, x_{2} \in \mathbb{R}\right\}
$$

Graphically, $P=$ flat plane in \mathbb{R}^{3}, where height coordinate $=0$

Let \mathbf{e}_{1} and \mathbf{e}_{2} be the canonical basis vectors in \mathbb{R}^{3}
Claim: $\operatorname{span}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}=P$
Proof:
Let $\mathbf{x}=\left(x_{1}, x_{2}, 0\right)$ be any element of P
We can write \mathbf{x} as

$$
\mathbf{x}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
0
\end{array}\right)=x_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+x_{2}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}
$$

In other words, $P \subset \operatorname{span}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$
Conversely (check it) we have $\operatorname{span}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\} \subset P$

Figure: $\operatorname{span}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}=P$

Linear Subspaces

A nonempty $S \subset \mathbb{R}^{N}$ called a linear subspace of \mathbb{R}^{N} if

$$
\mathbf{x}, \mathbf{y} \in S \text { and } \alpha, \beta \in \mathbb{R} \quad \Longrightarrow \quad \alpha \mathbf{x}+\beta \mathbf{y} \in S
$$

In other words, $S \subset \mathbb{R}^{N}$ is "closed" under vector addition and scalar multiplication

Note: Sometimes we just say subspace...

Example. \mathbb{R}^{N} itself is a linear subspace of \mathbb{R}^{N}

Example

Fix $\mathbf{a} \in \mathbb{R}^{N}$ and let $A:=\left\{\mathbf{x} \in \mathbb{R}^{N}: \mathbf{a}^{\prime} \mathbf{x}=0\right\}$

Fact. The set A is a linear subspace of \mathbb{R}^{N}

Proof: Let $\mathbf{x}, \mathbf{y} \in A$ and let $\alpha, \beta \in \mathbb{R}$
We must show that $\mathbf{z}:=\alpha \mathbf{x}+\beta \mathbf{y} \in A$
Equivalently, that $\mathbf{a}^{\prime} \mathbf{z}=0$
True because

$$
\mathbf{a}^{\prime} \mathbf{z}=\mathbf{a}^{\prime}(\alpha \mathbf{x}+\beta \mathbf{y})=\alpha \mathbf{a}^{\prime} \mathbf{x}+\beta \mathbf{a}^{\prime} \mathbf{y}=0+0=0
$$

Fact. If Z is a nonempty subset of \mathbb{R}^{N}, then $\operatorname{span}(Z)$ is a linear subspace

Proof: If $\mathbf{x}, \mathbf{y} \in \operatorname{span}(Z)$, then \exists vectors \mathbf{z}_{k} in Z and scalars γ_{k} and δ_{k} such that

$$
\begin{aligned}
& \mathbf{x}=\sum_{k=1}^{K} \gamma_{k} \mathbf{z}_{k} \quad \text { and } \quad \mathbf{y}=\sum_{k=1}^{K} \delta_{k} \mathbf{z}_{k} \\
\therefore \quad & \alpha \mathbf{x}=\sum_{k=1}^{K} \alpha \gamma_{k} \mathbf{z}_{k} \quad \text { and } \quad \beta \mathbf{y}=\sum_{k=1}^{K} \beta \delta_{k} \mathbf{z}_{k} \\
& \therefore \quad \alpha \mathbf{x}+\beta \mathbf{y}=\sum_{k=1}^{K}\left(\alpha \gamma_{k}+\beta \delta_{k}\right) \mathbf{z}_{k}
\end{aligned}
$$

This vector clearly lies in $\operatorname{span}(Z)$

Fact. If S and S^{\prime} are two linear subspaces of \mathbb{R}^{N}, then $S \cap S^{\prime}$ is also a linear subspace of \mathbb{R}^{N}.

Proof: Let S and S^{\prime} be two linear subspaces of \mathbb{R}^{N}
Fix $\mathbf{x}, \mathbf{y} \in S \cap S^{\prime}$ and $\alpha, \beta \in \mathbb{R}$
We claim that $\mathbf{z}:=\alpha \mathbf{x}+\beta \mathbf{y} \in S \cap S^{\prime}$

- Since $\mathbf{x}, \mathbf{y} \in S$ and S is a linear subspace we have $\mathbf{z} \in S$
- Since $\mathbf{x}, \mathbf{y} \in S^{\prime}$ and S^{\prime} is a linear subspace we have $\mathbf{z} \in S^{\prime}$

Therefore $\mathbf{z} \in S \cap S^{\prime}$

Other examples of linear subspaces

- The singleton $\{0\}$ in \mathbb{R}^{N}
- Lines through the origin in \mathbb{R}^{2} and \mathbb{R}^{3}
- Planes through the origin in \mathbb{R}^{3}

Ex. Let S be a linear subspace of \mathbb{R}^{N}. Show that

1. $\mathbf{0} \in S$
2. If $X \subset S$, then $\operatorname{span}(X) \subset S$
3. $\operatorname{span}(S)=S$
