ECON2125/8013 Lecture 7

John Stachurski

Semester 1, 2015

Announcements

- Mid semester exam — date after break requested
- Access to previous exam papers against school policy
- Practice questions with solutions will be posted soon on GitHub

Linear Independence

Important applied questions

- When is a matrix invertible?
- When do regression arguments suffer from collinearity?
- When does a set of linear equations have a solution?
- When is that solution unique?
- How can we approximate complex functions parsimoniously?
- What is the rank of a matrix?

All of these questions closely related to linear independence

Definition

A nonempty collection of vectors $X:=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}\right\} \subset \mathbb{R}^{N}$ is called linearly independent if

$$
\sum_{k=1}^{K} \alpha_{k} \mathbf{x}_{k}=\mathbf{0} \Longrightarrow \alpha_{1}=\cdots=\alpha_{K}=0
$$

As we'll see, linear independence of a set of vectors determines how large a space they span

Loosely speaking, linearly independent sets span large spaces

Example. Let $\mathbf{x}:=(1,2)$ and $\mathbf{y}:=(-5,3)$
The set $X=\{\mathbf{x}, \mathbf{y}\}$ is linearly independent in \mathbb{R}^{2}
Indeed, suppose α_{1} and α_{2} are scalars with

$$
\alpha_{1}\binom{1}{2}+\alpha_{2}\binom{-5}{3}=\mathbf{0}
$$

Equivalently,

$$
\begin{aligned}
\alpha_{1} & =5 \alpha_{2} \\
2 \alpha_{1} & =-3 \alpha_{2}
\end{aligned}
$$

Then $2\left(5 \alpha_{2}\right)=10 \alpha_{2}=-3 \alpha_{2}$, implying $\alpha_{2}=0$ and hence $\alpha_{1}=0$

Example

The set of canonical basis vectors $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{N}\right\}$ is linearly independent in \mathbb{R}^{N}

Proof: Let $\alpha_{1}, \ldots, \alpha_{N}$ be coefficients such that $\sum_{k=1}^{N} \alpha_{k} \mathbf{e}_{k}=\mathbf{0}$

Then

$$
\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{N}
\end{array}\right)=\sum_{k=1}^{N} \alpha_{k} \mathbf{e}_{k}=\mathbf{0}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

In particular, $\alpha_{k}=0$ for all k
Hence $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{N}\right\}$ linearly independent

As a first step to better understanding linear independence let's look at some equivalences

Take $X:=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}\right\} \subset \mathbb{R}^{N}$
Fact. For $K>1$ all of following statements are equivalent

1. X is linearly independent
2. No $\mathbf{x}_{i} \in X$ can be written as linear combination of the others
3. $X_{0} \subsetneq X \Longrightarrow \operatorname{span}\left(X_{0}\right) \subsetneq \operatorname{span}(X)$

- Here $X_{0} \subsetneq X$ means $X_{0} \subset X$ and $X_{0} \neq X$
- We say that X_{0} is a proper subset of X

As an exercise, let's show that the first two statements are equivalent

The first is

$$
\sum_{k=1}^{K} \alpha_{k} \mathbf{x}_{k}=\mathbf{0} \Longrightarrow \alpha_{1}=\cdots=\alpha_{K}=0
$$

The second is
no $\mathbf{x}_{i} \in X$ can be written as linear combination of others ($\star \star$)

We now show that

- $(\star) \Longrightarrow(\star \star)$, and
- ($\star \star) \Longrightarrow(\star)$

To show that $(\star) \Longrightarrow(\star \star)$ let's suppose to the contrary that

1. $\sum_{k=1}^{K} \alpha_{k} \mathbf{x}_{k}=\mathbf{0} \Longrightarrow \alpha_{1}=\cdots=\alpha_{K}=0$
2. and yet some \mathbf{x}_{i} can be written as a linear combination of the other elements of X

In particular, suppose that

$$
\mathbf{x}_{i}=\sum_{k \neq i} \alpha_{k} \mathbf{x}_{k}
$$

Then, rearranging,

$$
\alpha_{1} \mathbf{x}_{1}+\cdots+(-1) \mathbf{x}_{i}+\cdots+\alpha_{K} \mathbf{x}_{K}=\mathbf{0}
$$

This contradicts 1., and hence ($\star \star$) holds

To show that $(\star \star) \Longrightarrow(\star)$ let's suppose to the contrary that

1. no \mathbf{x}_{i} can be written as a linear combination of others
2. and yet $\exists \alpha_{1}, \ldots, \alpha_{K}$ not all zero with $\alpha_{1} \mathbf{x}_{1}+\cdots+\alpha_{K} \mathbf{x}_{K}=\mathbf{0}$

Suppose without loss of generality that $\alpha_{1} \neq 0$
(Similar argument works for any α_{j})

Then

$$
\mathbf{x}_{1}=\frac{\alpha_{2}}{-\alpha_{1}} \mathbf{x}_{2}+\cdots+\frac{\alpha_{K}}{-\alpha_{1}} \mathbf{x}_{K}
$$

This contradicts 1 ., and hence (\star) holds

Let's show one more part of the proof as an exercise:
X linearly independent \Longrightarrow proper subsets of X have smaller span

Proof: Suppose to the contrary that

1. X is linearly independent,
2. $X_{0} \subsetneq X$ and yet
3. $\operatorname{span}\left(X_{0}\right)=\operatorname{span}(X)$

Let \mathbf{x}_{j} be in X but not X_{0}
Since $\mathbf{x}_{j} \in \operatorname{span}(X)$, we also have $\mathbf{x}_{j} \in \operatorname{span}\left(X_{0}\right)$
But then \mathbf{x}_{j} can be written as a linear combination of the other elements of X

This contradicts linear independence

Example. Dropping any of the canonical basis vectors reduces span
Consider the $N=2$ case
We know that span $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}=$ all of \mathbb{R}^{2}
Removing either element of $\operatorname{span}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ reduces the span to a line

Figure: The span of $\left\{\mathbf{e}_{1}\right\}$ alone is the horizonal axis

Example. As another visual example of linear independence, consider the pair

$$
\mathbf{x}_{1}=\left(\begin{array}{l}
3 \\
4 \\
2
\end{array}\right) \quad \text { and } \quad \mathbf{x}_{2}=\left(\begin{array}{c}
3 \\
-4 \\
1
\end{array}\right)
$$

The span of this pair is a plane in \mathbb{R}^{3}

But if we drop either one the span reduces to a line

Figure: The span of $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ is a plane

Figure: The span of $\left\{\mathbf{x}_{1}\right\}$ alone is a line

Figure: The span of $\left\{\mathbf{x}_{2}\right\}$ alone is a line

Linear Dependence

If X is not linearly independent then it is called linearly dependent
We saw above that
linear independence \Longleftrightarrow dropping any elements reduces span

Hence X is linearly dependent when some elements can be removed without changing span (X)

That is,

$$
\exists X_{0} \subsetneq X \text { s.t. } \operatorname{span}\left(X_{0}\right)=\operatorname{span}(X)
$$

Example. As an example with redundacy, consider $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\} \subset \mathbb{R}^{2}$ where

- $\mathbf{x}_{1}=\mathbf{e}_{1}:=(1,0)$
- $\mathbf{x}_{2}=(-2,0)$

Figure: The vectors \mathbf{x}_{1} and \mathbf{x}_{2}

We claim that $\operatorname{span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}=\operatorname{span}\left\{\mathbf{x}_{1}\right\}$
Proof: $\operatorname{span}\left\{\mathbf{x}_{1}\right\} \subset \operatorname{span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ is clear (why?)
To see the reverse, pick any $\mathbf{y} \in \operatorname{span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$
By definition,

$$
\begin{aligned}
& \exists \alpha_{1}, \alpha_{2} \text { s.t. } \mathbf{y}=\alpha_{1} \mathbf{x}_{1}+\alpha_{2} \mathbf{x}_{2}=\alpha_{1}\binom{1}{0}+\alpha_{2}\binom{-2}{0} \\
& \therefore \quad \mathbf{y}=\alpha_{1}\binom{1}{0}-2 \alpha_{2}\binom{1}{0}=\left(\alpha_{1}-2 \alpha_{2}\right)\binom{1}{0}=\left(\alpha_{1}-2 \alpha_{2}\right) \mathbf{x}_{1}
\end{aligned}
$$

The right hand side is clearly in span $\left\{\mathbf{x}_{1}\right\}$
Hence $\operatorname{span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\} \subset \operatorname{span}\left\{\mathbf{x}_{1}\right\}$ as claimed

Implications of Independence

Let $X:=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}\right\} \subset \mathbb{R}^{N}$

Fact. If X is linearly independent, then X does not contain $\mathbf{0}$
Ex. Prove it
Fact. If X is linearly independent, then every subset of X is linearly independent

Sketch of proof: Suppose for example that $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{K-1}\right\} \subset X$ is linearly dependent
Then $\exists \alpha_{1}, \ldots, \alpha_{K-1}$ not all zero with $\sum_{k=1}^{K-1} \alpha_{k} \mathbf{x}_{k}=\mathbf{0}$
Setting $\alpha_{K}=0$ we can write this as $\sum_{k=1}^{K} \alpha_{k} \mathbf{x}_{k}=\mathbf{0}$
Not all scalars zero so contradicts linear independence of X

Fact. If $X:=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}\right\} \subset \mathbb{R}^{N}$ is linearly independent and \mathbf{z} is an N-vector not in $\operatorname{span}(X)$, then $X \cup\{\mathbf{z}\}$ is linearly independent

Proof: Suppose to the contrary that $X \cup\{\mathbf{z}\}$ is linearly dependent:

$$
\begin{equation*}
\exists \alpha_{1}, \ldots, \alpha_{K}, \beta \text { not all zero with } \sum_{k=1}^{K} \alpha_{k} \mathbf{x}_{k}+\beta \mathbf{z}=\mathbf{0} \tag{1}
\end{equation*}
$$

If $\beta=0$, then by (1) we have $\sum_{k=1}^{K} \alpha_{k} \mathbf{x}_{k}=\mathbf{0}$ and $\alpha_{k} \neq 0$ for some k, a contradiction

If $\beta \neq 0$, then by (1) we have

$$
\mathbf{z}=\sum_{k=1}^{K} \frac{-\alpha_{k}}{\beta} \mathbf{x}_{k}
$$

Hence $\mathbf{z} \in \operatorname{span}(X)$ - contradiction

Unique Representations

Let

- $X:=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}\right\} \subset \mathbb{R}^{N}$
- $\mathbf{y} \in \mathbb{R}^{N}$

We know that if $\mathbf{y} \in \operatorname{span}(X)$, then exists representation

$$
\mathbf{y}=\sum_{k=1}^{K} \alpha_{k} \mathbf{x}_{k}
$$

But when is this representation unique?

Answer: When X is linearly independent

Fact. If $X=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}\right\} \subset \mathbb{R}^{N}$ is linearly independent and $\mathbf{y} \in \mathbb{R}^{N}$, then there is at most one set of scalars $\alpha_{1}, \ldots, \alpha_{K}$ such that $\mathbf{y}=\sum_{k=1}^{K} \alpha_{k} \mathbf{x}_{k}$

Proof: Suppose there are two such sets of scalars
That is,

$$
\begin{gathered}
\exists \alpha_{1}, \ldots, \alpha_{K} \text { and } \beta_{1}, \ldots, \beta_{K} \text { s.t. } \mathbf{y}=\sum_{k=1}^{K} \alpha_{k} \mathbf{x}_{k}=\sum_{k=1}^{K} \beta_{k} \mathbf{x}_{k} \\
\therefore \quad \sum_{k=1}^{K}\left(\alpha_{k}-\beta_{k}\right) \mathbf{x}_{k}=\mathbf{0}
\end{gathered}
$$

$\therefore \quad \alpha_{k}=\beta_{k}$ for all k

Exchange Lemma

Here's one of the most fundamental results in linear algebra
Fact. (Exchange lemma) If

1. S is a linear subspace of \mathbb{R}^{N}
2. S is spanned by K vectors,
then any linearly independent subset of S has at most K vectors

Proof: Omitted

Example. If $X:=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\} \subset \mathbb{R}^{2}$ then X is linearly dependent

- because \mathbb{R}^{2} is spanned by the two vectors $\mathbf{e}_{1}, \mathbf{e}_{2}$

Figure : Must be linearly dependent

Example

Recall the plane

$$
P:=\left\{\left(x_{1}, x_{2}, 0\right) \in \mathbb{R}^{3}: x_{1}, x_{2} \in \mathbb{R}\right\}
$$

- flat plane in \mathbb{R}^{3} where height coordinate $=$ zero

We showed before that $\operatorname{span}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}=P$ for

$$
\mathbf{e}_{1}:=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad \mathbf{e}_{2}:=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

Therefore any three vectors lying in P are linearly dependent

Figure: Any three vectors in P are linearly dependent

When Do N Vectors Span \mathbb{R}^{N} ?

In general, linearly independent vectors have a relatively "large" span

- No vector is redundant, so each contributes to the span

This helps explain the following fact:
Let $X:=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$ be any N vectors in \mathbb{R}^{N}
Fact. $\operatorname{span}(X)=\mathbb{R}^{N}$ if and only if X is linearly independent

Example. The vectors $\mathbf{x}=(1,2)$ and $\mathbf{y}=(-5,3)$ span \mathbb{R}^{2}

- We already showed $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent

Let's start with the proof that

$$
X=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\} \text { linearly independent } \Longrightarrow \operatorname{span}(X)=\mathbb{R}^{N}
$$

Seeking a contradiction, suppose that

1. X is linearly independent
2. and yet $\exists \mathbf{z} \in \mathbb{R}^{N}$ with $\mathbf{z} \notin \operatorname{span}(X)$

But then $X \cup\{\mathbf{z}\} \subset \mathbb{R}^{N}$ is linearly independent (why?)
This set has $N+1$ elements
And yet \mathbb{R}^{N} is spanned by the N canonical basis vectors
Contradiction (of what?)

Next let's show the converse

$$
\operatorname{span}(X)=\mathbb{R}^{N} \Longrightarrow X=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\} \text { linearly independent }
$$

Seeking a contradiction, suppose that

1. $\operatorname{span}(X)=\mathbb{R}^{N}$
2. and yet X is linearly dependent

Since X not independent, $\exists X_{0} \subsetneq X$ with $\operatorname{span}\left(X_{0}\right)=\operatorname{span}(X)$
But by 1 this implies that \mathbb{R}^{N} is spanned by $K<N$ vectors
But then the N canonical basis vectors must be linearly dependent
Contradiction

Bases

Let S be a linear subspace of \mathbb{R}^{N}
A set of vectors $B:=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{K}\right\} \subset S$ is called a basis of S if

1. B is linearly independent
2. $\operatorname{span}(B)=S$

Example. Canonical basis vectors form a basis of \mathbb{R}^{N}
Indeed, if $E:=\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{N}\right\} \subset \mathbb{R}^{N}$, then

- E is linearly independent - we showed this earlier
- $\operatorname{span}(E)=\mathbb{R}^{N}$ - we showed this earlier

Example

Recall the plane

$$
P:=\left\{\left(x_{1}, x_{2}, 0\right) \in \mathbb{R}^{3}: x_{1}, x_{2} \in \mathbb{R}\right\}
$$

We showed before that $\operatorname{span}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}=P$ for

$$
\mathbf{e}_{1}:=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad \mathbf{e}_{2}:=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

Moreover, $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ is linearly independent (why?)

Hence $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ is a basis for P

Figure: The pair $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ form a basis for P

What are the implications of B being a basis of S ?
In short, every element of S can be represented uniquely from the smaller set B

In more detail:

- B spans S and, by linear independence, every element is needed to span S - a "minimal" spanning set
- Since B spans S, every \mathbf{y} in S can be represented as a linear combination of the basis vectors
- By independence, this representation is unique

It's obvious given the definition that
Fact. If $B \subset \mathbb{R}^{N}$ is linearly independent, then B is a basis of $\operatorname{span}(B)$

Example. Let $B:=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ where

$$
\mathbf{x}_{1}=\left(\begin{array}{l}
3 \\
4 \\
2
\end{array}\right) \quad \text { and } \quad \mathbf{x}_{2}=\left(\begin{array}{c}
3 \\
-4 \\
1
\end{array}\right)
$$

We saw earlier that

- $S:=\operatorname{span}(B)$ is the plane in \mathbb{R}^{3} passing through $\mathbf{x}_{1}, \mathbf{x}_{2}$ and $\mathbf{0}$
- B is linearly independent in \mathbb{R}^{3} (dropping either reduces span)

Hence B is a basis for the plane S

Figure: The pair $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ is a basis of its span

Fundamental Properties of Bases

Fact. If S is a linear subspace of \mathbb{R}^{N} distinct from $\{\mathbf{0}\}$, then

1. S has at least one basis, and
2. every basis of S has the same number of elements

Proof of part 2: Let B_{i} be a basis of S with K_{i} elements, $i=1,2$
By definition, B_{2} is a linearly independent subset of S
Moreover, S is spanned by the set B_{1}, which has K_{1} elements
Hence $K_{2} \leq K_{1}$
Reversing the roles of B_{1} and B_{2} gives $K_{1} \leq K_{2}$

Dimension

Let S be a linear subspace of \mathbb{R}^{N}
We now know that every basis of S has the same number of elements

This common number is called the dimension of S

Example. \mathbb{R}^{N} is N dimensional because the N canonical basis vectors form a basis

Example. $P:=\left\{\left(x_{1}, x_{2}, 0\right) \in \mathbb{R}^{3}: x_{1}, x_{2} \in \mathbb{R}\right\}$ is two dimensional because the first two canonical basis vectors of \mathbb{R}^{3} form a basis

Example. In \mathbb{R}^{3}, a line through the origin is one-dimensional, while a plane through the origin is two-dimensional

Dimension of Spans

Fact. Let $X:=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}\right\} \subset \mathbb{R}^{N}$
The following statements are true:

1. $\operatorname{dim}(\operatorname{span}(X)) \leq K$
2. $\operatorname{dim}(\operatorname{span}(X))=K \Longleftrightarrow X$ is linearly independent

Proof that $\operatorname{dim}(\operatorname{span}(X)) \leq K$
If not then $\operatorname{span}(X)$ has a basis with $M>K$ elements
Hence $\operatorname{span}(X)$ contains $M>K$ linearly independent vectors
This is impossible, given that $\operatorname{span}(X)$ is spanned by K vectors

Now consider the second claim:

1. X is linearly independent $\Longrightarrow \operatorname{dim}(\operatorname{span}(X))=K$

Proof: True because the vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{K}$ form a basis of $\operatorname{span}(X)$
2. $\operatorname{dim}(\operatorname{span}(X))=K \Longrightarrow X$ linearly independent

Proof: If not then $\exists X_{0} \subsetneq X$ such that $\operatorname{span}\left(X_{0}\right)=\operatorname{span}(X)$
By this equality and part 1 of the theorem,

$$
\operatorname{dim}(\operatorname{span}(X))=\operatorname{dim}\left(\operatorname{span}\left(X_{0}\right)\right) \leq \# X_{0} \leq K-1
$$

Contradiction

Fact. If S a linear subspace of \mathbb{R}^{N}, then

$$
\operatorname{dim}(S)=N \Longleftrightarrow S=\mathbb{R}^{N}
$$

Useful implications

- The only N-dimensional subspace of \mathbb{R}^{N} is \mathbb{R}^{N}
- To show $S=\mathbb{R}^{N}$ just need to show that $\operatorname{dim}(S)=N$

Proof: See course notes

