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Announcements

• Mid semester exam — date after break requested

• Access to previous exam papers against school policy

• Practice questions with solutions will be posted soon on
GitHub
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Linear Independence

Important applied questions

• When is a matrix invertible?

• When do regression arguments suffer from collinearity?

• When does a set of linear equations have a solution?

• When is that solution unique?

• How can we approximate complex functions parsimoniously?

• What is the rank of a matrix?

All of these questions closely related to linear independence
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Definition

A nonempty collection of vectors X := {x1, . . . , xK} ⊂ RN is
called linearly independent if

K

∑
k=1

αkxk = 0 =⇒ α1 = · · · = αK = 0

As we’ll see, linear independence of a set of vectors determines
how large a space they span

Loosely speaking, linearly independent sets span large spaces
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Example. Let x := (1, 2) and y := (−5, 3)

The set X = {x, y} is linearly independent in R2

Indeed, suppose α1 and α2 are scalars with

α1

(
1
2

)
+ α2

(
−5
3

)
= 0

Equivalently,

α1 = 5α2

2α1 = −3α2

Then 2(5α2) = 10α2 = −3α2, implying α2 = 0 and hence α1 = 0
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Example

The set of canonical basis vectors {e1, . . . , eN} is linearly
independent in RN

Proof: Let α1, . . . , αN be coefficients such that ∑N
k=1 αkek = 0

Then 
α1
α2
...

αN

 =
N

∑
k=1

αkek = 0 =


0
0
...
0



In particular, αk = 0 for all k

Hence {e1, . . . , eN} linearly independent
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As a first step to better understanding linear independence let’s
look at some equivalences

Take X := {x1, . . . , xK} ⊂ RN

Fact. For K > 1 all of following statements are equivalent

1. X is linearly independent

2. No xi ∈ X can be written as linear combination of the others

3. X0 ( X =⇒ span(X0) ( span(X)

• Here X0 ( X means X0 ⊂ X and X0 6= X

• We say that X0 is a proper subset of X
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As an exercise, let’s show that the first two statements are
equivalent

The first is

K

∑
k=1

αkxk = 0 =⇒ α1 = · · · = αK = 0 (?)

The second is

no xi ∈ X can be written as linear combination of others (??)

We now show that

• (?) =⇒ (??), and

• (??) =⇒ (?)
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To show that (?) =⇒ (??) let’s suppose to the contrary that

1. ∑K
k=1 αkxk = 0 =⇒ α1 = · · · = αK = 0

2. and yet some xi can be written as a linear combination of the
other elements of X

In particular, suppose that

xi = ∑
k 6=i

αkxk

Then, rearranging,

α1x1 + · · ·+ (−1)xi + · · ·+ αKxK = 0

This contradicts 1., and hence (??) holds
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To show that (??) =⇒ (?) let’s suppose to the contrary that

1. no xi can be written as a linear combination of others

2. and yet ∃ α1, . . . , αK not all zero with α1x1 + · · ·+ αKxK = 0

Suppose without loss of generality that α1 6= 0

(Similar argument works for any αj)

Then
x1 =

α2

−α1
x2 + · · ·+

αK

−α1
xK

This contradicts 1., and hence (?) holds
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Let’s show one more part of the proof as an exercise:

X linearly independent =⇒ proper subsets of X have smaller span

Proof: Suppose to the contrary that

1. X is linearly independent,

2. X0 ( X and yet

3. span(X0) = span(X)

Let xj be in X but not X0

Since xj ∈ span(X), we also have xj ∈ span(X0)

But then xj can be written as a linear combination of the other
elements of X

This contradicts linear independence
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Example. Dropping any of the canonical basis vectors reduces span

Consider the N = 2 case

We know that span{e1, e2} = all of R2

Removing either element of span{e1, e2} reduces the span to a line

e1 = (1, 0)

Figure : The span of {e1} alone is the horizonal axis
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Example. As another visual example of linear independence,
consider the pair

x1 =

3
4
2

 and x2 =

 3
−4
1



The span of this pair is a plane in R3

But if we drop either one the span reduces to a line
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0

0

0 x1

x2

Figure : The span of {x1, x2} is a plane
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0

0

0 x1

Figure : The span of {x1} alone is a line



16/41

Linear Independence Implications of Independence Span and Independence Bases

0

0

0

x2

Figure : The span of {x2} alone is a line
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Linear Dependence

If X is not linearly independent then it is called linearly dependent

We saw above that

linear independence ⇐⇒ dropping any elements reduces span

Hence X is linearly dependent when some elements can be
removed without changing span(X)

That is,
∃X0 ( X s.t. span(X0) = span(X)
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Example. As an example with redundacy, consider {x1, x2} ⊂ R2

where

• x1 = e1 := (1, 0)
• x2 = (−2, 0)

x1x2

Figure : The vectors x1 and x2
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We claim that span{x1, x2} = span{x1}

Proof: span{x1} ⊂ span{x1, x2} is clear (why?)

To see the reverse, pick any y ∈ span{x1, x2}

By definition,

∃ α1, α2 s.t. y = α1x1 + α2x2 = α1

(
1
0

)
+ α2

(
−2
0

)

∴ y = α1

(
1
0

)
− 2α2

(
1
0

)
= (α1 − 2α2)

(
1
0

)
= (α1 − 2α2)x1

The right hand side is clearly in span{x1}

Hence span{x1, x2} ⊂ span{x1} as claimed
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Implications of Independence

Let X := {x1, . . . , xK} ⊂ RN

Fact. If X is linearly independent, then X does not contain 0

Ex. Prove it

Fact. If X is linearly independent, then every subset of X is
linearly independent

Sketch of proof: Suppose for example that {x1, . . . , xK−1} ⊂ X is
linearly dependent

Then ∃ α1, . . . , αK−1 not all zero with ∑K−1
k=1 αkxk = 0

Setting αK = 0 we can write this as ∑K
k=1 αkxk = 0

Not all scalars zero so contradicts linear independence of X
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Fact. If X := {x1, . . . , xK} ⊂ RN is linearly independent and z is
an N-vector not in span(X), then X ∪ {z} is linearly independent

Proof: Suppose to the contrary that X ∪ {z} is linearly dependent:

∃ α1, . . . , αK, β not all zero with
K

∑
k=1

αkxk + βz = 0 (1)

If β = 0, then by (1) we have ∑K
k=1 αkxk = 0 and αk 6= 0 for some

k, a contradiction

If β 6= 0, then by (1) we have

z =
K

∑
k=1

−αk

β
xk

Hence z ∈ span(X) — contradiction
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Unique Representations

Let

• X := {x1, . . . , xK} ⊂ RN

• y ∈ RN

We know that if y ∈ span(X), then exists representation

y =
K

∑
k=1

αkxk

But when is this representation unique?

Answer: When X is linearly independent
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Fact. If X = {x1, . . . , xK} ⊂ RN is linearly independent and
y ∈ RN, then there is at most one set of scalars α1, . . . , αK such
that y = ∑K

k=1 αkxk

Proof: Suppose there are two such sets of scalars

That is,

∃ α1, . . . , αK and β1, . . . , βK s.t. y =
K

∑
k=1

αkxk =
K

∑
k=1

βkxk

∴
K

∑
k=1

(αk − βk)xk = 0

∴ αk = βk for all k
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Exchange Lemma

Here’s one of the most fundamental results in linear algebra

Fact. (Exchange lemma) If

1. S is a linear subspace of RN

2. S is spanned by K vectors,

then any linearly independent subset of S has at most K vectors

Proof: Omitted

Example. If X := {x1, x2, x3} ⊂ R2 then X is linearly dependent

• because R2 is spanned by the two vectors e1, e2
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4 2 0 2 4

4

2

0

2

4
(2, 4)

(-3, 3)

(-4, -3.5)

Figure : Must be linearly dependent
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Example

Recall the plane

P := {(x1, x2, 0) ∈ R3 : x1, x2 ∈ R}

• flat plane in R3 where height coordinate = zero

We showed before that span{e1, e2} = P for

e1 :=

 1
0
0

 , e2 :=

 0
1
0


Therefore any three vectors lying in P are linearly dependent
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0

0

0x1

x2

x3

Figure : Any three vectors in P are linearly dependent
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When Do N Vectors Span RN?

In general, linearly independent vectors have a relatively “large”
span

• No vector is redundant, so each contributes to the span

This helps explain the following fact:

Let X := {x1, . . . , xN} be any N vectors in RN

Fact. span(X) = RN if and only if X is linearly independent

Example. The vectors x = (1, 2) and y = (−5, 3) span R2

• We already showed {x, y} is linearly independent
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Let’s start with the proof that

X = {x1, . . . , xN} linearly independent =⇒ span(X) = RN

Seeking a contradiction, suppose that

1. X is linearly independent

2. and yet ∃ z ∈ RN with z /∈ span(X)

But then X ∪ {z} ⊂ RN is linearly independent (why?)

This set has N + 1 elements

And yet RN is spanned by the N canonical basis vectors

Contradiction (of what?)



30/41

Linear Independence Implications of Independence Span and Independence Bases

Next let’s show the converse

span(X) = RN =⇒ X = {x1, . . . , xN} linearly independent

Seeking a contradiction, suppose that

1. span(X) = RN

2. and yet X is linearly dependent

Since X not independent, ∃X0 ( X with span(X0) = span(X)

But by 1 this implies that RN is spanned by K < N vectors

But then the N canonical basis vectors must be linearly dependent

Contradiction
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Bases

Let S be a linear subspace of RN

A set of vectors B := {b1, . . . , bK} ⊂ S is called a basis of S if

1. B is linearly independent

2. span(B) = S

Example. Canonical basis vectors form a basis of RN

Indeed, if E := {e1, . . . , eN} ⊂ RN, then

• E is linearly independent – we showed this earlier

• span(E) = RN – we showed this earlier
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Example

Recall the plane

P := {(x1, x2, 0) ∈ R3 : x1, x2 ∈ R}

We showed before that span{e1, e2} = P for

e1 :=

 1
0
0

 , e2 :=

 0
1
0


Moreover, {e1, e2} is linearly independent (why?)

Hence {e1, e2} is a basis for P
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0

0

0

e1

e2

Figure : The pair {e1, e2} form a basis for P
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What are the implications of B being a basis of S?

In short, every element of S can be represented uniquely from the
smaller set B

In more detail:

• B spans S and, by linear independence, every element is
needed to span S — a “minimal” spanning set

• Since B spans S, every y in S can be represented as a linear
combination of the basis vectors

• By independence, this representation is unique
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It’s obvious given the definition that

Fact. If B ⊂ RN is linearly independent, then B is a basis of
span(B)

Example. Let B := {x1, x2} where

x1 =

3
4
2

 and x2 =

 3
−4
1


We saw earlier that

• S := span(B) is the plane in R3 passing through x1, x2 and 0
• B is linearly independent in R3 (dropping either reduces span)

Hence B is a basis for the plane S
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0

0

0 x1

x2

Figure : The pair {x1, x2} is a basis of its span
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Fundamental Properties of Bases

Fact. If S is a linear subspace of RN distinct from {0}, then

1. S has at least one basis, and

2. every basis of S has the same number of elements

Proof of part 2: Let Bi be a basis of S with Ki elements, i = 1, 2

By definition, B2 is a linearly independent subset of S

Moreover, S is spanned by the set B1, which has K1 elements

Hence K2 ≤ K1

Reversing the roles of B1 and B2 gives K1 ≤ K2
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Dimension

Let S be a linear subspace of RN

We now know that every basis of S has the same number of
elements

This common number is called the dimension of S

Example. RN is N dimensional because the N canonical basis
vectors form a basis

Example. P := {(x1, x2, 0) ∈ R3 : x1, x2 ∈ R} is two dimensional
because the first two canonical basis vectors of R3 form a basis

Example. In R3, a line through the origin is one-dimensional, while
a plane through the origin is two-dimensional
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Dimension of Spans

Fact. Let X := {x1, . . . , xK} ⊂ RN

The following statements are true:

1. dim(span(X)) ≤ K
2. dim(span(X)) = K ⇐⇒ X is linearly independent

Proof that dim(span(X)) ≤ K

If not then span(X) has a basis with M > K elements

Hence span(X) contains M > K linearly independent vectors

This is impossible, given that span(X) is spanned by K vectors
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Now consider the second claim:

1. X is linearly independent =⇒ dim(span(X)) = K

Proof: True because the vectors x1, . . . , xK form a basis of
span(X)

2. dim(span(X)) = K =⇒ X linearly independent

Proof: If not then ∃X0 ( X such that span(X0) = span(X)

By this equality and part 1 of the theorem,

dim(span(X)) = dim(span(X0)) ≤ #X0 ≤ K− 1

Contradiction
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Fact. If S a linear subspace of RN, then

dim(S) = N ⇐⇒ S = RN

Useful implications

• The only N-dimensional subspace of RN is RN

• To show S = RN just need to show that dim(S) = N

Proof: See course notes
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