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Linear Maps

In this section we investigate one of the most important classes of
functions

These are the so-called linear functions

Linear functions play a fundamental role in all fields of science

• In one-to-one correspondence with matrices

Even nonlinear functions can often be rewritten as partially linear

The properties of linear functions are closely tied to notions such as

• linear combinations, span

• linear independence, bases, etc.
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Linearity

A function T : RK → R
N is called linear if

T(αx + βy) = αTx + βTy ∀ x, y ∈ RK, ∀ α, β ∈ R

Notation:

• Linear functions often written with upper case letters

• Typically omit parenthesis around arguments when convenient
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Example. T : R→ R defined by Tx = 2x is linear

Proof: Take any α, β, x, y in R and observe that

T(αx + βy) = 2(αx + βy) = α2x + β2y = αTx + βTy

Example. The function f : R→ R defined by f (x) = x2 is
nonlinear

Proof: Set α = β = x = y = 1

Then

• f (αx + βy) = f (2) = 4
• But α f (x) + β f (y) = 1 + 1 = 2
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Example

Given constants c1 and c2, the function T : R2 → R defined by

Tx = T(x1, x2) = c1x1 + c2x2

is linear

Proof: If we take any α, β in R and x, y in R2, then

T(αx + βy) = c1[αx1 + βy1] + c2[αx2 + βy2]

= α[c1x1 + c2x2] + β[c1y1 + c2y2]

= αTx + βTy
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0

0

0

Figure : The graph of Tx = c1x1 + c2x2 is a plane through the origin
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Remark: Thinking of linear functions as those whose graph is a
straight line is not correct

Example

Function f : R→ R defined by f (x) = 1 + 2x is nonlinear

Proof: Take α = β = x = y = 1

Then

• f (αx + βy) = f (2) = 5
• But α f (x) + β f (y) = 3 + 3 = 6

This kind of function is called an affine function
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Let a1, . . . , aK be vectors in RN

Let T : RK → R
N be defined by

Tx = T

x1
...

xK

 = x1a1 + . . . + xKaK

Ex. Show that this function is linear

Remarks

• This is a generalization of the previous linear examples

• In a sense it is the most general representation of a linear map
from R

K to RN

• It is also “the same” as the N × K matrix with columns
a1, . . . , aK — more on this later
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Implications of Linearity

Fact. If T : RK → R
N is a linear map and x1, . . . , xJ are vectors in

R
K, then for any linear combination we have

T [α1x1 + · · ·+ αJxJ ] = α1Tx1 + · · ·+ αJTxJ

Proof for J = 3: Applying the def of linearity twice,

T [α1x1 + α2x2 + α3x3] = T [(α1x1 + α2x2) + α3x3]

= T [α1x1 + α2x2] + α3Tx3

= α1Tx1 + α2Tx2 + α3Tx3

Ex. Show that if T is any linear function then T0 = 0
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Fact. If T : RK → R
N is a linear map, then

rng(T) = span(V) where V := {Te1, . . . , TeK}

• Here ek is the k-th canonical basis vector in RK

Proof: Any x ∈ RK can be expressed as ∑K
k=1 αkek

Hence rng(T) is the set of all points of the form

Tx = T

[
K

∑
k=1

αkek

]
=

K

∑
k=1

αkTek

as we vary α1, . . . , αK over all combinations

This coincides with the definition of span(V)
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Example

Let T : R2 → R
2 be defined by

Tx = T(x1, x2) = x1

(
1
2

)
+ x2

(
0
−2

)

Then

Te1 =

(
1
2

)
and Te2 =

(
0
−2

)

Ex. Show that V := {Te1, Te2} is linearly independent

We conclude that the range of T is all of R2 (why?)
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The null space or kernel of linear map T : RK → R
N is

ker(T) := {x ∈ RK : Tx = 0}

Ex. Show that ker(T) is a linear subspace of RK

Fact. ker(T) = {0} if and only if T is one-to-one

Proof of =⇒ : Suppose that Tx = Ty for arbitrary x, y ∈ RK

Then 0 = Tx− Ty = T(x− y)

In other words, x− y ∈ ker(T)

Hence ker(T) = {0} =⇒ x = y
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Linearity and Bijections

Many scientific and practical problems are “inverse” problems

• We observe outcomes but not what caused them

• How can we work backwards from outcomes to causes?

Examples

• What consumer preferences generated observed market
behavior?

• What kinds of expectations led to given shift in exchange
rates?
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Loosely, we can express an inverse problem as

F(x) = y

outcomemodel

what x led to outcome y?

• Does this problem have a solution?

• Is it unique?

Answers depend on whether F is one-to-one, onto, etc.

The best case is a bijection

But other situations also arise



15/49

Linear Maps Matrices Matrices as Maps Rank

Recall that an arbitrary function can be

• one-to-one

• onto

• both (a bijection)

• neither

For linear functions from R
N to RN, the first three are all

equivalent!

In particular,

onto ⇐⇒ one-to-one ⇐⇒ bijection

The next theorem summarizes
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Fact. If T is a linear function from R
N to RN then all of the

following are equivalent:

1. T is a bijection

2. T is onto

3. T is one-to-one

4. ker(T) = {0}
5. The set of vectors V := {Te1, . . . , TeN} is linearly

independent

If any one of these equivalent conditions is true, then T is called
nonsingular

• Don’t forget: We are talking about RN to RN here
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2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.4

0.4

Tx=αx with α=0.2

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.4

0.4

Tx=αx with α=0

Figure : The case of N = 1, nonsingular and singular
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Proof that T onto ⇐⇒ V := {Te1, . . . , TeN} is linearly
independent

Recall that for any linear map T we have rng(T) = span(V)

Using this fact and the definitions,

T onto ⇐⇒ rng(T) = RN

⇐⇒ span(V) = RN

⇐⇒ V is linearly indepenent

(We saw that N vectors span RN iff linearly indepenent)

Rest of proof: Solved exercises
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Fact. If T : RN → R
N is nonsingular then so is T−1.

What is the implication here?

If T is a bijection then so is T−1

Hence the only real claim is that T−1 is also linear

The proof is an exercise...
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Maps Across Different Dimensions

Remember that these results apply to maps from R
N to RN

Things change when we look at linear maps across dimensions

The general rules for linear maps are

• Maps from lower to higher dimensions cannot be onto

• Maps from higher to lower dimensions cannot be one-to-one

In either case they cannot be bijections

The next fact summarizes
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Fact. For a linear map T from R
K → R

N, the following
statements are true:

1. If K < N then T is not onto

2. If K > N then T is not one-to-one

Proof of part 1: Let K < N and let T : RK → R
N be linear

Letting V := {Te1, . . . , TeK}, we have

dim(rng(T)) = dim(span(V)) ≤ K < N

∴ rng(T) 6= RN

Hence T is not onto
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Proof of part 2: K > N =⇒ T is not one-to-one

Suppose to the contrary that T is one-to-one

Let α1, . . . , αK be a collection of vectors such that

α1Te1 + · · ·+ αKTeK = 0

∴ T(α1e1 + · · ·+ αKeK) = 0 (by linearity)

∴ α1e1 + · · ·+ αKeK = 0 (since ker(T) = {0})

∴ α1 = · · · = αK = 0 (by independence of {e1, . . . eK})

We have shown that {Te1, . . . , TeK} is linearly independent

But then RN contains a linearly independent set with K > N
vectors — contradiction
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Example. Cost function c(k, `) = rk + w` cannot be one-to-one
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Matrices and Linear Equations

We now begin our study of matrices

As we’ll see, there’s an isomorphic relationship between

1. matrices

2. linear maps

Often properties of matrices are best understood via those of linear
maps
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Matrices

Typical N × K matrix:

A =


a11 a12 · · · a1K
a21 a22 · · · a2K
...

...
...

aN1 aN2 · · · aNK



Symbol ank stands for element in the

• n-th row

• k-th column
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Often matrices correspond to coefficients of a linear equation

a11x1 + a12x2 + · · ·+ a1KxK = b1
a21x1 + a22x2 + · · ·+ a2KxK = b2

...
aN1x1 + aN2x2 + · · ·+ aNKxK = bN

(1)

Given the anm and bn, what values of x1, . . . , xK solve this system?

We now investigate this and other related questions

But first some background on matrices...
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An N × K matrix also called a

• row vector if N = 1

• column vector if K = 1

Examples.

b =

 b1
...

bN

 is N × 1, c =
(
c1 · · · cK

)
is 1× K

If N = K, then A is called square
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We use

• colk(A) to denote the k-th column of A
• rown(A) to denote the n-th row of A

Example

col1(A) = col1


a11 · · · a1K
a21 · · · a2K
...

...
...

aN1 · · · aNK

 =


a11
a21
...

aN1
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The zero matrix is

0 :=


0 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0


The identity matrix is

I :=


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1
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Algebraic Operations for Matrices

Addition and scalar multiplication are also defined for matrices

Both are element by element, as in the vector case

Scalar multiplication:

γ


a11 a12 · · · a1K
a21 a22 · · · a2K
...

...
...

aN1 aN2 · · · aNK

 :=


γa11 γa12 · · · γa1K
γa21 γa22 · · · γa2K

...
...

...
γaN1 γaN2 · · · γaNK
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Addition:


a11 · · · a1K
a21 · · · a2K
...

...
...

aN1 · · · aNK

+


b11 · · · b1K
b21 · · · b2K
...

...
...

bN1 · · · bNK



:=


a11 + b11 · · · a1K + b1K
a21 + b21 · · · a2K + b2K

...
...

...
aN1 + bN1 · · · aNK + bNK


Note that matrices must be same dimension
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Multiplication of matrices:

Product AB: i, j-th element is inner product of i-th row of A and
j-th column of B


a11 · · · a1K
a21 · · · a2K
...

...
...

aN1 · · · aNK




b11 · · · b1J
b21 · · · b2J
...

...
...

bK1 · · · bKJ

 =


c11 · · · c1J
c21 · · · c2J
...

...
...

cN1 · · · cNJ


In this display,

c11 =
K

∑
k=1

a1kbk1
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Suppose A is N × K and B is J ×M

• AB defined only if K = J
• Resulting matrix AB is N ×M

The rule to remember:

product of N × K and K×M is N ×M

Important: Multiplication is not commutative

In particular, it is not in general true that AB = BA

• In fact BA is not well-defined unless N = M also holds
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Useful observation:

Ax =


a11 a12 · · · a1K
a21 a22 · · · a2K
...

...
...

aN1 aN2 · · · aNK




x1
x2
...

xK



= x1


a11
a21
...

aN1

+ x2


a12
a22
...

aN2

+ · · ·+ xK


a1K
a2K

...
aNK


=

K

∑
k=1

xk colk(A)



35/49

Linear Maps Matrices Matrices as Maps Rank

Rules for multiplication:

Fact. Given scalar α and conformable A, B and C, we have

1. A(BC) = (AB)C

2. A(B + C) = AB + AC

3. (A + B)C = AC + BC

4. AαB = αAB

(Here “conformable” means operation makes sense)
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The k-th power of a square matrix A is

Ak := A · · ·A︸ ︷︷ ︸
k terms

If it exists, the square root of A is written A1/2

Defined as the matrix B such that B2 is A

More on these later...
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In matrix multiplication, I is the multiplicative unit

That is, assuming conformability, we always have

AI = IA = A

Ex. Check it using the definition of matrix multiplication

Note: If I is K× K, then

colk(I) = ek = k-th canonical basis vector in RK
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In [1]: import numpy as np

In [2]: A = [[2, 4],

...: [4, 2]]

In [3]: A = np.array(A) # Convert A to array

In [4]: B = np.identity(2)

In [5]: B

Out[5]:

array([[ 1., 0.],

[ 0., 1.]])
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In [6]: A + B # Matrix addition

Out[6]:

array([[ 3., 4.],

[ 4., 3.]])

In [7]: np.dot(A, B) # Matrix multiplication

Out[7]:

array([[ 2., 4.],

[ 4., 2.]])
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Matrices as Maps

Any N × K matrix A can be thought of as a function x 7→ Ax

• In Ax the x is understood to be a column vector

It turns out that every such map is linear

To see this fix N × K matrix A and let T be defined by

T : RK → R
N , Tx = Ax

Pick any x, y in RK, and any scalars α and β

The rules of matrix arithmetic tell us that

T(αx + βy) := A(αx + βy) = αAx + βAy =: αTx + βTy
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So matrices make linear functions

How about examples of linear functions that don’t involve
matrices?

Actually there are none!

Fact. If T : RK → R
N then

T is linear ⇐⇒ ∃ N × K matrix A s.t. Tx = Ax, ∀ x ∈ RK

• On the last slide we showed the ⇐= part

• On the next slide we show the =⇒ part
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Let T : RK → R
N be linear

We aim to construct an N × K matrix A such that

Tx = Ax, ∀ x ∈ RK

As usual, let ek be the k-th canonical basis vector in RK

Define a matrix A by colk(A) = Tek

Pick any x = (x1, . . . , xK) ∈ RK

By linearity we have

Tx = T

[
K

∑
k=1

xkek

]
=

K

∑
k=1

xkTek =
K

∑
k=1

xk colk(A) = Ax
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Matrix Product as Composition

Let

• A be N × K and B be K×M
• T : RK → R

N be the linear map Tx = Ax
• U : RM → R

K be the linear map Ux = Bx

The matrix product AB corresponds exactly to the composition of
T and U

Proof:
(T ◦U)(x) = T(Ux) = T(Bx) = ABx
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This helps us understand a few things

For example, let

• A be N × K and B be J ×M
• T : RK → R

N be the linear map Tx = Ax
• U : RM → R

J be the linear map Ux = Bx

Then AB is only defined when K = J

This is because AB corresponds to T ◦U

But for T ◦U to be well defined we need K = J

Then U maps RM to RK and T maps RK to RN
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Column Space

Let A be an N × K matrix

The column space of A is defined as the span of its columns

span(A) = span{col1(A), . . . , colK(A)}

= all vectors of the form
K

∑
k=1

xk colk(A)

Equivalently,
span(A) := {Ax : x ∈ RK}

This is exactly the range of the associated linear map

T : RK → R
N defined by Tx = Ax
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Example. If

A =

(
1 −5
2 3

)
then the span is all linear combinations

x1

(
1
2

)
+ x2

(
−5
3

)
where (x1, x2) ∈ R2

These columns are linearly independent (shown earlier)

Hence the column space is all of R2 (why?)

Ex. Show that the column space of any N × K matrix is a linear
subspace of RN
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Rank

Equivalent questions

• How large is the range of the linear map Tx = Ax?

• How large is the column space of A?

The obvious measure of size for a linear subspace is its dimension

The dimension of span(A) is known as the rank of A

rank(A) := dim(span(A))

Because span(A) is the span of K vectors, we have

rank(A) = dim(span(A)) ≤ K
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A is said to have full column rank if

rank(A) = number of columns of A

Fact. For any matrix A, the following statements are equivalent:

1. A is of full column rank

2. The columns of A are linearly independent

3. If Ax = 0, then x = 0

Ex. Check this, recalling that

dim(span{a1, . . . , aK}) = K ⇐⇒ {a1, . . . , aK} linearly indepenent
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In [1]: import numpy as np

In [2]: A = [[2.0, 1.0],

...: [6.3, 3.0]]

In [3]: np.linalg.matrix_rank(A)

Out[3]: 2

In [4]: A = [[2.0, 1.0], # Col 2 is half col 1

...: [6.0, 3.0]]

In [5]: np.linalg.matrix_rank(A)

Out[5]: 1
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