ECON2125/4021/8013
 Lecture 9

John Stachurski

Semester 1, 2015

Announcements

- Preliminary midterm exam date: April 23rd
- Solved exercises up on GitHub
- Extended office hours for tutors
- 4:00-6:00pm on Friday for Guanlong
- 3:00-5:00pm on Friday for Qingyin
- Proofs / logic / sets reference, if you want one
- Simon and Blume, appendix A1
- Sydsaeter and Hammond, Chapter 1
- Linear algebra reference, if you want one
- "Linear Algebra" by David Lay (expensive but good)

Reminder I

Suppose we want to find the x that solves $f(x)=y$
The ideal case is when f is a bijection

Equivalent:

- f is a bijection
- each $y \in B$ has a unique preimage
- $f(x)=y$ has a unique solution x for each y

Reminder II

Let T be a linear function from \mathbb{R}^{N} to \mathbb{R}^{N}

We saw that in this case all of the following are equivalent:

1. T is a bijection
2. T is onto
3. T is one-to-one
4. $\operatorname{ker}(T)=\{\mathbf{0}\}$
5. $V:=\left\{T \mathbf{e}_{1}, \ldots, T \mathbf{e}_{N}\right\}$ is linearly independent

We then say that T is nonsingular (= linear bijection)

Linear Equations

Let's look at solving linear equations such as $\mathbf{A x}=\mathbf{b}$
We start with the "best" case:
number of equations $=$ number of unknowns

Thus,

- Take $N \times N$ matrix \mathbf{A} and $N \times 1$ vector \mathbf{b} as given
- Search for an $N \times 1$ solution \mathbf{x}

But does such a solution exist? If so is it unique?

The best way to think about this is to consider the corresponding linear map

$$
T: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}, \quad T \mathbf{x}=\mathbf{A x}
$$

Equivalent:

1. $\mathbf{A x}=\mathbf{b}$ has a unique solution \mathbf{x} for any given \mathbf{b}
2. $T \mathbf{x}=\mathbf{b}$ has a unique solution \mathbf{x} for any given \mathbf{b}
3. T is a bijection

We already have conditions for linear maps to be bijections Just need to translate these into the matrix setting

Recall that T called nonsingular if T is a linear bijection
We say that \mathbf{A} is nonsingular if T is nonsingular
Equivalent:

- $\mathbf{x} \mapsto \mathbf{A x}$ is a bijection from \mathbb{R}^{N} to \mathbb{R}^{N}

We now list equivalent conditions for nonsingularity

Let \mathbf{A} be an $N \times N$ matrix
Fact. All of the following conditions are equivalent

1. \mathbf{A} is nonsingular
2. The columns of \mathbf{A} are linearly independent
3. $\operatorname{rank}(\mathbf{A})=N$
4. $\operatorname{span}(\mathbf{A})=\mathbb{R}^{N}$
5. If $\mathbf{A x}=\mathbf{A y}$, then $\mathbf{x}=\mathbf{y}$
6. If $\mathbf{A x}=\mathbf{0}$, then $\mathbf{x}=\mathbf{0}$
7. For each $\mathbf{b} \in \mathbb{R}^{N}$, the equation $\mathbf{A x}=\mathbf{b}$ has a solution
8. For each $\mathbf{b} \in \mathbb{R}^{N}$, the equation $\mathbf{A x}=\mathbf{b}$ has a unique solution

All equivalent ways of saying that $T \mathbf{x}=\mathbf{A x}$ is a bijection!

Example. For condition 5 the equivalence is

$$
\begin{aligned}
& \text { if } \mathbf{A x}=\mathbf{A} \mathbf{y} \text {, then } \mathbf{x}=\mathbf{y} \\
& \Longleftrightarrow \text { if } T \mathbf{x}=T \mathbf{y}, \text { then } \mathbf{x}=\mathbf{y} \\
& \Longleftrightarrow T \text { is one-to-one }
\end{aligned}
$$

Since T is a linear map from \mathbb{R}^{N} to \mathbb{R}^{N},
T is a bijection

Example. For condition 6 the equivalence is

$$
\text { if } \begin{aligned}
& \mathbf{A} \mathbf{x}=\mathbf{0} \text {, then } \mathbf{x}=\mathbf{0} \\
& \Longleftrightarrow\{\mathbf{x}: \mathbf{A} \mathbf{x}=\mathbf{0}\}=\{\mathbf{0}\} \\
& \Longleftrightarrow\{\mathbf{x}: T \mathbf{x}=\mathbf{0}\}=\{\mathbf{0}\} \\
& \Longleftrightarrow \operatorname{ker}(T)=\{\mathbf{0}\}
\end{aligned}
$$

Since T is a linear map from \mathbb{R}^{N} to \mathbb{R}^{N},
$\Longleftrightarrow \quad T$ is a bijection

Example. For condition 7 the equivalence is
for each $\mathbf{b} \in \mathbb{R}^{N}$, the equation $\mathbf{A x}=\mathbf{b}$ has a solution
\Longleftrightarrow every $\mathbf{b} \in \mathbb{R}^{N}$ has an \mathbf{x} such that $\mathbf{A x}=\mathbf{b}$
\Longleftrightarrow every $\mathbf{b} \in \mathbb{R}^{N}$ has an \mathbf{x} such that $T \mathbf{x}=\mathbf{b}$
$\Longleftrightarrow \quad T$ is onto

Since T is a linear map from \mathbb{R}^{N} to \mathbb{R}^{N},
$\Longleftrightarrow \quad T$ is a bijection

Now consider condition 2:

The columns of \mathbf{A} are linearly independent

Let \mathbf{e}_{n} be the n-th canonical basis vector in \mathbb{R}^{N}
Observe that $\mathbf{A e} \mathbf{e}_{n}=\operatorname{col}_{n}(\mathbf{A})$

$$
\therefore \quad T \mathbf{e}_{n}=\operatorname{col}_{n}(\mathbf{A})
$$

$\therefore \quad V:=\left\{T \mathbf{e}_{1}, \ldots, T \mathbf{e}_{N}\right\}=$ columns of \mathbf{A}

And V is linearly independent if and only if T is a bijection

Example. Consider a one good linear market system

$$
\begin{array}{ll}
q=a-b p & (\text { demand }) \\
q=c+d p & (\text { supply })
\end{array}
$$

Treating q and p as the unknowns, let's write in matrix form as

$$
\left(\begin{array}{cc}
1 & b \\
1 & -d
\end{array}\right)\binom{q}{p}=\binom{a}{c}
$$

A unique solution exists whenever the columns are linearly independent

- means that $(b,-d)$ is not a scalar multiple of $\mathbf{1}$
- means that $b \neq-d$

Figure : $(b,-d)$ is not a scalar multiple of $\mathbf{1}$

Example. Recall when we try to solve the system $\mathbf{A x}=\mathbf{b}$ of this form

In [1]: import numpy as np
In [2]: from scipy.linalg import solve
In [3]: $\mathrm{A}=[[0,2,4]$,
...: $\quad[1,4,8]$,
...: [0, 3, 6]]

In [4]: b = (1, 2, 0)

In [5]: A, b = np.asarray(A), np.asarray(b)

In [6]: solve(A, b)

This is the output that we got

```
LinAlgError Traceback (most recent call last)
<ipython-input-8-4fb5f41eaf7c> in <module>()
----> 1 solve(A, b)
/home/john/anaconda/lib/python2.7/site-packages/scipy/lina
        97 return x
        98 if info > 0:
---> 99 raise LinAlgError("singular matrix")
    100 raise ValueError('illegal value in %d-th argume
LinAlgError: singular matrix
```

The problem is that \mathbf{A} is singular (not nonsingular)

- In particular, $\operatorname{col}_{3}(\mathbf{A})=2 \operatorname{col}_{2}(\mathbf{A})$

Inverse Matrices

Given square matrix \mathbf{A}, suppose \exists square matrix \mathbf{B} such that

$$
\mathbf{A B}=\mathbf{B} \mathbf{A}=\mathbf{I}
$$

Then

- \mathbf{B} is called the inverse of \mathbf{A}, and written \mathbf{A}^{-1}
- \mathbf{A} is called invertible

Fact. A square matrix \mathbf{A} is nonsingular if and only if it is invertible
Remark

- \mathbf{A}^{-1} is just the matrix corresponding to the linear map T^{-1}

Fact. Given nonsingular $N \times N$ matrix \mathbf{A} and $\mathbf{b} \in \mathbb{R}^{N}$, the unique solution to $\mathbf{A x}=\mathbf{b}$ is given by

$$
\mathbf{x}_{b}:=\mathbf{A}^{-1} \mathbf{b}
$$

Proof: Since A is nonsingular we already know any solution is unique

- T is a bijection, and hence one-to-one
- if $\mathbf{A x}=\mathbf{A y}=\mathbf{b}$ then $\mathbf{x}=\mathbf{y}$

To show that \mathbf{x}_{b} is indeed a solution we need to show that $\mathbf{A x} \mathbf{x}_{b}=\mathbf{b}$

To see this, observe that

$$
\mathbf{A} \mathbf{x}_{b}=\mathbf{A} \mathbf{A}^{-1} \mathbf{b}=\mathbf{I b}=\mathbf{b}
$$

Example. Recall the one good linear market system

$$
\begin{aligned}
& q=a-b p \\
& q=c+d p
\end{aligned} \quad \Longleftrightarrow \quad\left(\begin{array}{cc}
1 & b \\
1 & -d
\end{array}\right)\binom{q}{p}=\binom{a}{c}
$$

Suppose that $a=5, b=2, c=1, d=1.5$
The matrix system is $\mathbf{A x}=\mathbf{b}$ where

$$
\mathbf{A}:=\left(\begin{array}{cc}
1 & 2 \\
1 & -1.5
\end{array}\right), \mathbf{x}:=\binom{q}{p}, \mathbf{b}:=\binom{5}{1}
$$

Since $b \neq-d$ we can solve for the unique solution
Easy by hand but let's try on the computer

```
In [1]: import numpy as np
In [2]: from scipy.linalg import inv
In [3]: \(\mathrm{A}=[[1,2]\),
...: [1, -1.5]]
In [4]: b = [5, 1]
In [5]: q, p = np. \(\operatorname{dot}(\operatorname{inv}(A), b) \# A^{\wedge}\{-1\} \quad b\)
In [6]: q
Out[6]: 2.7142857142857144
In [7]: p
Out[7]: 1.1428571428571428
```


Figure: Equilibrium $\left(p^{*}, q^{*}\right)$ in the one good case

Fact. In the 2×2 case, the inverse has the form

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Example.

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & 2 \\
1 & -1.5
\end{array}\right) \quad \Longrightarrow \quad \mathbf{A}^{-1}=\frac{1}{-3.5}\left(\begin{array}{cc}
-1.5 & -2 \\
-1 & 1
\end{array}\right)
$$

Example. Consider the N good linear demand system

$$
\begin{equation*}
q_{n}=\sum_{k=1}^{N} a_{n k} p_{k}+b_{n}, \quad n=1, \ldots N \tag{1}
\end{equation*}
$$

Task: take quantities q_{1}, \ldots, q_{N} as given and find corresponding prices p_{1}, \ldots, p_{N} - the "inverse demand curves"

We can write (1) as

$$
\mathbf{q}=\mathbf{A p}+\mathbf{b}
$$

where vectors are N-vectors and \mathbf{A} is $N \times N$
If the columns of \mathbf{A} are linearly independent then a unique solution exists for each fixed \mathbf{q} and \mathbf{b}, and is given by

$$
\mathbf{p}=\mathbf{A}^{-1}(\mathbf{q}-\mathbf{b})
$$

Left and Right Inverses

Given square matrix \mathbf{A}, a matrix \mathbf{B} is called

- a left inverse of \mathbf{A} if $\mathbf{B A}=\mathbf{I}$
- a right inverse of \mathbf{A} if $\mathbf{A B}=\mathbf{I}$

By definition, a matrix that is both an left inverse and a right inverse is an inverse

Fact. If square matrix \mathbf{B} is either a left or right inverse for \mathbf{A}, then \mathbf{A} is nonsingular and $\mathbf{A}^{-1}=\mathbf{B}$

In other words, for square matrices,

$$
\text { left inverse } \Longleftrightarrow \text { right inverse } \Longleftrightarrow \text { inverse }
$$

Rules for Inverses

Fact. If \mathbf{A} is nonsingular and $\alpha \neq 0$, then

1. \mathbf{A}^{-1} is nonsingular and $\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A}$
2. $\alpha \mathbf{A}$ is nonsingular and $(\alpha \mathbf{A})^{-1}=\alpha^{-1} \mathbf{A}^{-1}$

Proof of part 2:
It suffices to show that $\alpha^{-1} \mathbf{A}^{-1}$ is the right inverse of $\alpha \mathbf{A}$

This is true because

$$
\alpha \mathbf{A} \alpha^{-1} \mathbf{A}^{-1}=\alpha \alpha^{-1} \mathbf{A} \mathbf{A}^{-1}=\mathbf{I}
$$

Fact. If \mathbf{A} and \mathbf{B} are $N \times N$ and nonsingular then

1. $\mathbf{A B}$ is also nonsingular
2. $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$

Proof I: Let T and U be the linear maps corresponding to \mathbf{A} and \mathbf{B}
Recall that

- $T \circ U$ is the linear map corresponding to $\mathbf{A B}$
- Compositions of linear maps are linear
- Compositions of bijections are bijections

Hence $T \circ U$ is a linear bijection with $(T \circ U)^{-1}=U^{-1} \circ T^{-1}$
That is, $\mathbf{A B}$ is nonsingular with inverse $\mathbf{B}^{-1} \mathbf{A}^{-1}$

Proof II:

A different proof that $\mathbf{A B}$ is nonsingular with inverse $\mathbf{B}^{-1} \mathbf{A}^{-1}$
Suffices to show that $\mathbf{B}^{-1} \mathbf{A}^{-1}$ is the right inverse of $\mathbf{A B}$
To see this, observe that

$$
\mathbf{A B B} \mathbf{B}^{-1} \mathbf{A}^{-1}=\mathbf{A} \mathbf{A}^{-1}=\mathbf{I}
$$

Hence $\mathbf{B}^{-1} \mathbf{A}^{-1}$ is a right inverse as claimed

When the Conditions Fail

Suppose as before we have

- an $N \times N$ matrix \mathbf{A}
- an $N \times 1$ vector \mathbf{b}

We seek a solution \mathbf{x} to the equation $\mathbf{A x}=\mathbf{b}$
What if \mathbf{A} is singular?
Then $T \mathbf{x}=\mathbf{A x}$ is not a bijection, and in fact

- T cannot be onto (otherwise it's a bijection)
- T cannot be one-to-one (otherwise it's a bijection)

Hence neither existence nor uniqueness is guaranteed

Example. The matrix \mathbf{A} with columns

$$
\mathbf{a}_{1}:=\left(\begin{array}{l}
3 \\
4 \\
2
\end{array}\right), \quad \mathbf{a}_{2}:=\left(\begin{array}{c}
3 \\
-4 \\
1
\end{array}\right) \quad \text { and } \quad \mathbf{a}_{3}:=\left(\begin{array}{c}
-3 \\
4 \\
-1
\end{array}\right)
$$

is singular $\left(\mathbf{a}_{3}=-\mathbf{a}_{2}\right)$

Its column space $\operatorname{span}(\mathbf{A})$ is just a plane in \mathbb{R}^{2}
Recall $\mathbf{b} \in \operatorname{span}(\mathbf{A})$
$\Longleftrightarrow \exists x_{1}, \ldots, x_{N}$ such that $\sum_{k=1}^{N} x_{k} \operatorname{col}_{k}(\mathbf{A})=\mathbf{b}$
$\Longleftrightarrow \exists \mathbf{x}$ such that $\mathbf{A x}=\mathbf{b}$

Thus if \mathbf{b} is not in this plane then $\mathbf{A x}=\mathbf{b}$ has no solution

Figure: The vector \mathbf{b} is not in $\operatorname{span}(\mathbf{A})$

When \mathbf{A} is $N \times N$ and singular how rare is scenario $\mathbf{b} \in \operatorname{span}(\mathbf{A})$?
Answer: In a sense, very rare
We know that $\operatorname{dim}(\operatorname{span}(\mathbf{A}))<N$
Such sets are always "very small" subset of \mathbb{R}^{N} in terms of "volume"

- A $K<N$ dimensional subspace has "measure zero" in \mathbb{R}^{N}
- A "randomly chosen" b has zero probability of being in such a set

Example. Consider the case where $N=3$ and $K=2$
A two-dimensional linear subspace is a 2 D plane in \mathbb{R}^{3}
This set has no volume because planes have no "thickness"

All this means that if \mathbf{A} is singular then existence of a solution to $\mathbf{A x}=\mathbf{b}$ typically fails

In fact the problem is worse - uniqueness fails as well

Fact. If \mathbf{A} is a singular matrix and $\mathbf{A x}=\mathbf{b}$ has a solution then it has an infinity (in fact a continuum) of solutions

Proof: Let \mathbf{A} be singular and let \mathbf{x} be a solution
Since \mathbf{A} is singular there exists a nonzero \mathbf{y} with $\mathbf{A y}=\mathbf{0}$
But then $\alpha \mathbf{y}+\mathbf{x}$ is also a solution for any $\alpha \in \mathbb{R}$ because

$$
\mathbf{A}(\alpha \mathbf{y}+\mathbf{x})=\alpha \mathbf{A} \mathbf{y}+\mathbf{A} \mathbf{x}=\mathbf{A} \mathbf{x}=\mathbf{b}
$$

Determinants

Let $S(N)$ be set of all bijections from $\{1, \ldots, N\}$ to itself
For $\pi \in S(N)$ we define the signature of π as

$$
\operatorname{sgn}(\pi):=\prod_{m<n} \frac{\pi(m)-\pi(n)}{m-n}
$$

The determinant of $N \times N$ matrix \mathbf{A} is then given as

$$
\operatorname{det}(\mathbf{A}):=\sum_{\pi \in S(N)} \operatorname{sgn}(\pi) \prod_{n=1}^{N} a_{\pi(n) n}
$$

- You don't need to understand or remember this for our course

Fact. In the $N=2$ case this definition reduces to

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

- Remark: But you do need to remember this 2×2 case

Example

$$
\operatorname{det}\left(\begin{array}{cc}
2 & 0 \\
7 & -1
\end{array}\right)=(2 \times-1)-(7 \times 0)=-2
$$

Important facts concerning the determinant

Fact. If \mathbf{I} is the $N \times N$ identity, \mathbf{A} and \mathbf{B} are $N \times N$ matrices and $\alpha \in \mathbb{R}$, then

1. $\operatorname{det}(\mathbf{I})=1$
2. \mathbf{A} is nonsingular if and only if $\operatorname{det}(\mathbf{A}) \neq 0$
3. $\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})$
4. $\operatorname{det}(\alpha \mathbf{A})=\alpha^{N} \operatorname{det}(\mathbf{A})$
5. $\operatorname{det}\left(\mathbf{A}^{-1}\right)=(\operatorname{det}(\mathbf{A}))^{-1}$

Example. Thus singularity in the 2×2 case is equivalent to

$$
\operatorname{det}(\mathbf{A})=\operatorname{det}\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)=a_{11} a_{22}-a_{12} a_{21}=0
$$

Ex. Let $\mathbf{a}_{i}:=\operatorname{col}_{i}(\mathbf{A})$ and assume that $a_{i j} \neq 0$ for each i, j
Show the following are equivalent:

1. $a_{11} a_{22}=a_{12} a_{21}$
2. $\mathbf{a}_{1}=\lambda \mathbf{a}_{2}$ for some $\lambda \in \mathbb{R}$
```
In [1]: import numpy as np
In [2]: A = np.random.randn(2, 2) # Random matrix
In [3]: A
Out[3]:
array([[-0.70120551, 0.57088203],
    [ 0.40757074, -0.72769741]])
In [4]: np.linalg.det(A)
Out[4]: 0.27759063032043652
In [5]: 1.0 / np.linalg.det(np.linalg.inv(A))
Out[5]: 0.27759063032043652
```

As an exercise, let's now show that any right inverse is an inverse
Fix square \mathbf{A} and suppose \mathbf{B} is a right inverse:

$$
\begin{equation*}
\mathbf{A B}=\mathbf{I} \tag{2}
\end{equation*}
$$

Applying the determinant to both sides gives $\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})=1$ Hence B is nonsingular (why?) and we can

1. multiply (2) by \mathbf{B} to get $\mathbf{B A B}=\mathbf{B}$
2. then postmultiply by \mathbf{B}^{-1} to get $\mathbf{B A}=\mathbf{I}$

We see that \mathbf{B} is also left inverse, and therefore an inverse of \mathbf{A}
Ex. Do the left inverse case

Other Linear Equations

So far we have considered the nice $N \times N$ case for equations

- number of equations $=$ number of unknowns

We have to deal with other cases too
Underdetermined systems:

- eqs <unknowns

Overdetermined systems:

- eqs $>$ unknowns

Overdetermined Systems

Consider the system $\mathbf{A x}=\mathbf{b}$ where \mathbf{A} is $N \times K$ and $K<N$

- The elements of \mathbf{x} are the unknowns
- More equations than unknowns $(N>K)$

May not be able to find an \mathbf{x} that satisfies all N equations

Let's look at this in more detail...

Fix $N \times K$ matrix \mathbf{A} with $K<N$
Let $T: \mathbb{R}^{K} \rightarrow \mathbb{R}^{N}$ be defined by $T \mathbf{x}=\mathbf{A x}$

We know these to be equivalent:

1. there exists an $\mathbf{x} \in \mathbb{R}^{K}$ with $\mathbf{A x}=\mathbf{b}$
2. \mathbf{b} has a preimage under T
3. \mathbf{b} is in $\operatorname{rng}(T)$
4. \mathbf{b} is in $\operatorname{span}(\mathbf{A})$

We also know T cannot be onto (maps small to big space)
Hence $\mathbf{b} \in \operatorname{span}(\mathbf{A})$ will not always hold

Given our assumption that $K<N$, how rare is the scenario $\mathbf{b} \in \operatorname{span}(\mathbf{A})$?

Answer: We talked about this before - it's very rare

We know that $\operatorname{dim}(\operatorname{rng}(T))=\operatorname{dim}(\operatorname{span}(\mathbf{A})) \leq K<N$

A $K<N$ dimensional subspace has "measure zero" in \mathbb{R}^{N}

So should we give up on solving $\mathbf{A x}=\mathbf{b}$ in the overdetermined case?

What's typically done is we try to find a best approximation
To define "best" we need a way of ranking approximations
The standard way is in terms of Euclidean norm
In particular, we search for the \mathbf{x} that solves

$$
\min _{\mathbf{x} \in \mathbb{R}^{K}}\|\mathbf{A x}-\mathbf{b}\|
$$

Details later

Underdetermined Systems

Now consider $\mathbf{A x}=\mathbf{b}$ when \mathbf{A} is $N \times K$ and $K>N$
Let $T: \mathbb{R}^{K} \rightarrow \mathbb{R}^{N}$ be defined by $T \mathbf{x}=\mathbf{A x}$
Now T maps from a larger to a smaller place
This tells us that T is not one-to-one
Hence solutions are not in general unique
In fact the following is true
Ex. Show that $\mathbf{A x}=\mathbf{b}$ has a solution and $K>N$, then the same equation has an infinity of solutions

Remark: Working with underdetermined systems is relatively rare in economics / elsewhere

