THE AUSTRALIAN NATIONAL UNIVERSITY

Mid Semester Examination Semester One, 2015

Optimisation for Economics and Financial Economics

and

Mathematical Techniques in Economics I

(ECON2125/4021/8013)

Writing Period: 2 hours Study Period: 15 minutes Permitted Materials: None

All questions to be completed in the script book provided

Page 1 of 5 – ADV. ECON. METHODS

INSTRUCTIONS

- Read the questions carefully.
- There are 16 questions. Questions 1–14 are worth 2 marks. Question 15 is worth 4 marks. Question 16 is worth 8 marks.
- To maximize your marks, explain the steps in your arguments while at the same time avoiding irrelevant discussions. Try to be clear and succinct.
- In solving the questions, you are welcome to use any fact that you remember from the lecture slides without any form of proof. However, you should clearly state the relevant fact.
- You do not need to do the questions in order, as long as you clearly mark in your answer sheet which question you are addressing.

QUESTIONS

Question 1. The *mode* of a density p on \mathbb{R} is the maximizer of p on \mathbb{R} , if it exists. Consider the beta density

$$p(x) = \begin{cases} cx^{\alpha - 1}(1 - x)^{\beta - 1} & \text{if } 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

where *c* is a positive constant and α , $\beta > 1$. This density has a unique mode. Obtain it as a function of the parameters. Explain your derivation. In particular, justify your claim that the point you obtain is the mode.

Solution 1. If a point *x* is a maximizer of *p* then it must be that $x \in (0, 1)$, since *p* is strictly positive on this interval. Since *p* is differentiable on (0, 1), any maximizer must be a stationary point in this inverval. Hence the set of maximizers is a subset of the set of stationary points of *p* in (0, 1). Differentiating *p* and setting the result equal to zero gives the equation

$$x = \gamma(1-x)$$
 where $\gamma := \frac{\alpha - 1}{\beta - 1}$.

This equation has the unique solution

$$x^* = rac{\gamma}{1+\gamma} = rac{lpha - 1}{lpha + eta - 2}.$$

Since this point is the only stationary point, it is the only candidate for a maximizer. In the question we are told that a maximizer exists, so x^* must be the maximizer. In other words, x^* is the mode.

Question 2. Let **D** be the 10×10 diagonal matrix diag(1, 2, ..., 10).

- (i) What is D^2 ?
- (ii) Is **D** invertible? If so, what is the inverse?

Solution 2. We know from the lecture slides that the *k*-th power of **D** is the diagonal matrix formed by taking the *k*-th power of the element along the principle diagonal of **D**. That is,

$$\mathbf{D}^2 = \operatorname{diag}(1^2, 2^2, \dots, 10^2) = \operatorname{diag}(1, 4, \dots, 100).$$

We also know that **D** is invertible (since all elements on the principle diagonal are nonzero), and that the inverse is

$$\mathbf{D}^{-1} = \operatorname{diag}(1/1, 1/2..., 1/10)$$

Question 3. What is the dimension of \mathbb{R}^N ? Explain your answer, using the definition of dimension.

Solution 3. The dimension of \mathbb{R}^N is *N*. The explanation is as follows: The dimension of \mathbb{R}^N is the number of elements in any basis of \mathbb{R}^N . A set of vectors is a basis for a linear subspace if it is linearly independent and spans that subspace. Hence it suffices to find *N* linearly independent vectors that span \mathbb{R}^N . The canonical basis vectors $\mathbf{e}_1, \ldots, \mathbf{e}_N$ are such a set.

Question 4. Let **A** and **B** be square matrices of the same shape. Show that if **A** is singular then so is C := AB.

Solution 4. By the rules for determinants, det(C) = det(A) det(B). Since A is singular, the right hand size and therefore the left hand side is zero. Since a zero determinant implies singularity, we conclude that C is singular.

Question 5. Consider the matrix

$$\mathbf{B} := \left(\begin{array}{rrr} 1 & 4 & 0 \\ 0 & 8 & 1 \end{array} \right)$$

(ij Find a basis for the column space (i.e., the span of the columns) of **B**. Explain your derivation.

(iij What is the rank of **B**? Explain your answer.

Solution 5. Regarding part (i), the column space of **B** is denoted span(**B**) and defined as the span of its columns. Since the columns are vectors in \mathbb{R}^2 , the span of the columns is a subset of \mathbb{R}^2 . The first and last columns together are the canonical basis vectors for \mathbb{R}^2 . We know that these two vectors span \mathbb{R}^2 . The span of a larger set is at least as large. Hence the span of all three vectors is all of \mathbb{R}^2 . The first two vectors of **B** form a basis for \mathbb{R}^2 , and hence of span(**B**), since they are linearly independent and span \mathbb{R}^2 .

Regarding part (ii), the rank of **B** is 2, since the dimension of the column space is the number of elements in this (or any other) basis, which is 2.

Question 6. Let **A** be any $N \times K$ matrix, let λ be a real number, and let **B** := **A**'**A** + λ **I** where **I** is the $K \times K$ identity.

- (i) Show that **B** is symmetric.
- (ii) Show that **B** is positive definite whenever $\lambda > 0$.

Solution 6. B is symmetric, because $\mathbf{A'A}$ and \mathbf{I} are symmetric. In particular,

$$\mathbf{B}' = (\mathbf{A}'\mathbf{A} + \lambda\mathbf{I})' = (\mathbf{A}'\mathbf{A})' + \lambda\mathbf{I}' = \mathbf{A}'\mathbf{A} + \lambda\mathbf{I} = \mathbf{B}$$

To show that **B** is positive definite when $\lambda > 0$, we need to show that if $\mathbf{x} \in \mathbb{R}^{K}$ and $\mathbf{x} \neq \mathbf{0}$, then $\mathbf{x}'\mathbf{B}\mathbf{x} > 0$. To see that this is the case, take such an \mathbf{x} and observe that

$$\mathbf{x}'\mathbf{B}\mathbf{x} = \mathbf{x}'(\mathbf{A}'\mathbf{A} + \lambda\mathbf{I})\mathbf{x}$$

= $\mathbf{x}'\mathbf{A}'\mathbf{A}\mathbf{x} + \lambda\mathbf{x}'\mathbf{I}\mathbf{x}$
= $\mathbf{x}'\mathbf{A}'\mathbf{A}\mathbf{x} + \lambda\|\mathbf{x}\|^2$
= $(\mathbf{A}\mathbf{x})'\mathbf{A}\mathbf{x} + \lambda\|\mathbf{x}\|^2$
= $\|\mathbf{A}\mathbf{x}\|^2 + \lambda\|\mathbf{x}\|^2$

The first term on the right-hand side is nonnegative, and the second term is strictly positive, because $\lambda > 0$ and $\mathbf{x} \neq \mathbf{0}$. Hence **B** is positive definite, as claimed.

Question 7. Let **A** be a square matrix with columns $\mathbf{a}_1, \ldots, \mathbf{a}_N$. Show that if $\mathbf{a}'_i \mathbf{a}_j = \mathbb{1}\{i = j\}$, then **A**' is the inverse of **A**.

Solution 7. To show that \mathbf{A}' is the inverse of \mathbf{A} , we need to show that $\mathbf{A}'\mathbf{A} = \mathbf{I}_N$. By the definition of matrix multiplication, $\mathbf{A}'\mathbf{A}$ is the matrix such that the *i*, *j*-th element is $\mathbf{a}'_i\mathbf{a}_j$. By the assumption $\mathbf{a}'_i\mathbf{a}_j = \mathbb{1}\{i = j\}$, this matrix is equal to \mathbf{I}_N .

Question 8. Let **A** be positive definite. Show that $trace(\mathbf{A}) > 0$.

Solution 8. The trace of **A** is the sum of the diagonal elements of **A**, and will be strictly positive if all of the diagonal elements are strictly positive. This must be the case, because if \mathbf{e}_n is the *n*-th canonical basis vector, then $\mathbf{e}_n \neq \mathbf{0}$ and hence $\mathbf{e}'_n \mathbf{A} \mathbf{e}_n > 0$. But $\mathbf{e}'_n \mathbf{A} \mathbf{e}_n = a_{nn}$. Hence $a_{nn} > 0$ for all *n*.

Question 9. Let Ω be a sample space, let \mathbb{P} be a probability on Ω , and let *A* and *B* be events. Show that $\mathbb{P}(A) = \mathbb{P}(B) = 1$ implies $\mathbb{P}(A \cap B) = 1$.

Solution 9. Let \mathbb{P} , *A* and *B* be as stated in the question, with $\mathbb{P}(A) = \mathbb{P}(B) = 1$. From the lecture slides we know that

$$\mathbb{P}(A^c \cup B^c) \le \mathbb{P}(A^c) + \mathbb{P}(B^c) = 0.$$

$$\therefore \quad \mathbb{P}((A \cap B)^c) = 0.$$

$$\therefore \quad \mathbb{P}(A \cap B) = 1.$$

Question 10. Let Ω be any sample space, and let \mathcal{F} be the set of events. Define $\mathbb{P}: \mathcal{F} \to [0,1]$ by $\mathbb{P}(A) = 1$ if A is nonempty and $\mathbb{P}(\emptyset) = 0$. Is \mathbb{P} a probability on \mathcal{F} ? Why or why not? **Solution 10.** In general, \mathbb{P} is not a probability, because if *A* and *B* are disjoint nonempty sets, then $A \cup B$ is nonempty, and hence $\mathbb{P}(A \cup B) = 1$ while $\mathbb{P}(A) + \mathbb{P}(B) = 1 + 1 = 2$. Therefore additivity does not hold.

(The only caveat to this argument is that we may not be able to select two disjoint nonempty sets. This occurs precisely when Ω has only one element. If Ω has only one element, then additivity cannot be contradicted, and \mathbb{P} is a probability. Students are not expected to notice this and it is not part of the marks.)

Question 11. Let *X* be a random variable on sample space Ω with

$$\operatorname{rng}(X) = \{x_1, \ldots, x_K\}$$

where $x_1 < x_2 < \ldots < x_K$. Show that the events

$$\{X = x_k\}, \quad k = 1, \dots, K$$

form a partition of Ω .

Solution 11. Let

$$E_k := \{X = x_k\} := \{\omega \in \Omega : X(\omega) = x_k\}$$

To show that E_1, \ldots, E_K is a partition, we need to show that the sets are disjoint and that their union is Ω . To see that the sets are disjoint, observe that if $k \neq j$ and $\omega \in E_k$, then $X(\omega) = x_k$ and hence $X(\omega) \neq x_j$. It follows that $\omega \notin E_j$. A similar argument shows that if $\omega \in E_j$ then $\omega \notin E_k$. Hence the sets are disjoint.

In addition, since $\{x_1, ..., x_K\}$ is the range of X, and since X is a function on Ω , it must be that, given any $\omega \in \Omega$, we have $X(\omega) = x_k$ for some k in 1, ..., K. Hence $\omega \in E_k$. In other words, every $\omega \in \Omega$ must be in one of the sets $E_1, ..., E_K$. Hence their union is all of Ω .

Question 12. Let *X* be a binary random variable with $\mathbb{P}{X = 1} = p$.

Page 7 of 5 – ADV. ECON. METHODS

- (i) Calculate the expectation of *X*.
- (ii) Calculate the variance of *X*.

Solution 12. The expectation of *X* is $0 \times \mathbb{P}{X = 0} + 1 \times \mathbb{P}{X = 1} = p$. The variance is then

$$\mathbb{E} \left[(X - \mathbb{E} [X])^2 \right] = \mathbb{E} \left[(X - p)^2 \right]$$

= $(0 - p)^2 \times \mathbb{P} \{ X = 0 \} + (1 - p)^2 \times \mathbb{P} \{ X = 1 \}$
= $p^2 (1 - p) + (1 - p)^2 p$
= $p(1 - p)$

Question 13. Let $\theta > 0$ and let *X* be a random variable uniformly distributed (i.e., having the uniform distribution) on the interval $(0, \theta)$.

- (i) Give an expression for the density of *X*.
- (ii) Calculate the expectation of *X*.
- (iii) Calculate the variance of *X*.

Show your derivation for parts (ii) and (iii).

Solution 13. The density of *X* is the uniform density

$$p(x) = \frac{1}{\theta} \mathbb{1}\{0 < x < \theta\}$$

The expectation of *X* is therefore

$$\int_{-\infty}^{\infty} x p(x) dx = \int_{0}^{\theta} x \frac{1}{\theta} dx = \frac{1}{\theta} \frac{\theta^{2}}{2} = \frac{\theta}{2}$$

The variance of *X* is

$$\int_{-\infty}^{\infty} \left(x - \frac{\theta}{2}\right)^2 p(x) dx = \int_{0}^{\theta} \left(x - \frac{\theta}{2}\right)^2 \frac{1}{\theta} dx = \frac{\theta^2}{12}$$

Question 14. Let $\mathbf{X} \sim N(\mathbf{0}, \mathbf{\Sigma})$, where $N(\mathbf{0}, \mathbf{\Sigma})$ is the multivariate normal distribution in \mathbb{R}^2 with mean equal to the origin $\mathbf{0} \in \mathbb{R}^2$ and variance-covariance matrix

$$\boldsymbol{\Sigma} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

Let Y := a + BX where

$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix}$$
, $\mathbf{a} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 4 & 0 \\ 4 & 1 \end{pmatrix}$

- (i) What is the distribution of **Y**? Give a full description of the distribution with explanation.
- (ii) Are Y_1 and Y_2 independent? Why or why not?

Solution 14. Since linear combinations of multivariate normals are multivariate normal, **Y** is multivariate normal. To fully describe its distribution we need to pin down the mean and variance covariance matrix. By the rules for multivariate expectations and variances, we have

$$\mathbb{E}[\mathbf{Y}] = \mathbb{E}[\mathbf{a} + \mathbf{B}\mathbf{X}] = \mathbf{a} + \mathbf{B}\mathbb{E}[\mathbf{X}] = \mathbf{a} = \begin{pmatrix} 1\\ 3 \end{pmatrix}$$

For the variance-covariance matrix we have the rule

$$\operatorname{var}[\mathbf{a} + \mathbf{B}\mathbf{X}] = \mathbf{B}\operatorname{var}[\mathbf{X}]\mathbf{B}'$$

which in this case gives

$$\operatorname{var}[\mathbf{Y}] = \begin{pmatrix} 4 & 0 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 4 & 4 \\ 0 & 1 \end{pmatrix}$$
$$= 2 \begin{pmatrix} 4 & 0 \\ 4 & 1 \end{pmatrix} \begin{pmatrix} 4 & 4 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 32 & 32 \\ 32 & 34 \end{pmatrix}$$

Regarding part (ii), Y_1 and Y_2 are not independent, since their covariance is $32 \neq 0$.

Question 15. Let *X* be any random variable with $\mathbb{E}[|X|] < \infty$. Show that $X_n := X/n$ converges to zero in probability as $n \to \infty$.

Solution 15. To show that $X_n \xrightarrow{p} 0$ we need to show that for any $\delta > 0$ we have

$$\mathbb{P}\{|X_n - 0| > \delta\} = \mathbb{P}\{|X/n| > \delta\} \to 0 \qquad (n \to \infty)$$

To show this we can use an inequality from the lecture slides (the Markov inequality) to get

$$\mathbb{P}\{|X/n| > \delta\} = \mathbb{P}\{|X| > n\delta\} \le \frac{\mathbb{E}|X|}{n\delta} \to 0$$

Question 16. Consider the system of equations Y = AX + BW where

- **B** is $N \times K$ and N > K
- **A** is $N \times N$
- **X** and **Y** are $N \times 1$
- W is $K \times 1$

Suppose we are able to observe both Y and X, and we know the matrices A and B. On the other hand, W is a vector of unobservable shocks. Our aim is to solve for W in terms of the observable matrices A, B, X and Y. Show that if B has rank K then this is possible and give the expression for W in terms of A, B, X and Y.

Solution 16. If we premultiply $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{B}\mathbf{W}$ by \mathbf{B}' we get

$$\mathbf{B}'\mathbf{Y} = \mathbf{B}'\mathbf{A}\mathbf{X} + \mathbf{B}'\mathbf{B}\mathbf{W},$$

$$\mathbf{B'}\mathbf{B}\mathbf{W} = \mathbf{B'}(\mathbf{Y} - \mathbf{A}\mathbf{X}).$$

We can now write

$$\mathbf{W} = (\mathbf{B}'\mathbf{B})^{-1}\mathbf{B}'(\mathbf{Y} - \mathbf{A}\mathbf{X}).$$

provided that **B**'**B** is invertible. To show this it suffices to show the **B**'**B** is positive definite. To show that this is true, take any $x \neq 0$. Note that, since **B** has full column rank its columns are linearly independent, and, since $x \neq 0$, we must have $Bx \neq 0$. Hence

$$\mathbf{x}'\mathbf{B}'\mathbf{B}\mathbf{x} = \mathbf{x}'\mathbf{B}'\mathbf{B}\mathbf{x} = (\mathbf{B}\mathbf{x})'(\mathbf{B}\mathbf{x}) = \|\mathbf{B}\mathbf{x}\|^2 > 0.$$

This proves positive definiteness and hence invertibility of B'B.

or