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Solutions

Solution 1: The point x = 0 is indeed a maximizer, since f (x) = −|x| ≤
0 = f (0) for any x ∈ [−1, 1]. It is also a unique maximizer, since no other
point is a maximizer (because −|x| < 0 for any other x). It is an interior
maximizer since 0 is not an end point of [−1, 1]. It is not stationary because
f is not differentiable at this point (sketch the graph if you like) and hence
cannot satisfy f ′(x) = 0.

Solution 2: The set S of stationary points of f are the points x ∈ R such
that f ′(x) = cos(x) = 0. By the definition of the cosine function this is the
set

S := {x ∈ R : x = π/2 + kπ for k ∈ Z}
Every point in the domain R is interior (i.e, not an end point) and the
function f is differentiable, so the set of maximizers will be contained in
the set of stationary points. The same is true of the set of minimizers. From
the definition of the sine function, we have

f (π/2 + kπ) =

{
1 if k is even

−1 if k is odd

Hence the set of maximizers is

M∗ := {x ∈ R : x = π/2 + kπ for k an even integer}

The set of minimizers is

M∗ := {x ∈ R : x = π/2 + kπ for k an odd integer}
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Solution 3: First, the cost function is strictly increasing in k and `, so we
would never produce more output than we need to. In particular, any pair
(k, `) with f (k, `) > q is not a minimizer. Hence we need only consider the
case min{αk, β`} = q. Second, no point (k, `) with αk 6= β` is a minimizer.
For example, if αk > β` then we can slightly reduce k without changing
output min{αk, β`}. This will strictly reduce cost. A similar argument
applies to the case αk < β`.

These observations are enough to solve our problem. We know that any
minimizer satisfies αk = β`, and also that

min{αk, β`} = αk = β` = q

The only possibility is therefore (k∗, `∗) where k∗ = q/α and `∗ = q/β.
The minimum value is

rk∗ + w`∗ =
rq
α
+

wq
β

Solution 4: This is not always true. For example, if f (x) = x2 and g(x) =
4x, then g ◦ f and f ◦ g differ. Indeed, if we set x = 1, then

(g ◦ f )(1) = g( f (1)) = 4(12) = 4,

while
( f ◦ g)(1) = f (g(1)) = (4× 1)2 = 16.

Hence g ◦ f 6= f ◦ g as claimed.

Solution 5: No, these two vectors do not form a basis of R3. If it did then
R

3 would be spanned by just two vectors. This is impossible. For example,
it would imply by the exchange lemma that any three vectors in R3 are
linearly dependent. We know this is false.

Solution 6: Let A, B and C be any three sets, as in the question. Let

E := A ∩ (B ∪ C) and F := (A ∩ B) ∪ (A ∩ C)
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We need to show that E = F, or, equivalently, that E ⊂ F and F ⊂ E.

To see that E ⊂ F, pick any x ∈ E. We claim that x ∈ F also holds. To
see this, observe that since x ∈ E, it must be true that x is in A as well as
being in at least one of B and C. In the first case x is in both A and B. In
the second case x is in both A and C. In either case we have x ∈ F by the
definition of F.

To see that F ⊂ E, pick any x ∈ F. We claim that x ∈ E also holds. Indeed,
since x ∈ F we know that either x is in both A and B or x is in both A
and C. In other words, x is in A and also at least one of B and C. Hence
x ∈ E.

Solution 7: This is a bit of a trick question, but to solve it you just need
to look carefully at the definitions (as always). A linear subspace of R3

is a subset of R3 with certain properties. R3 is a collection of 3-tuples
(x1, x2, x3) where each xi is a real number. Elements of R2 are 2-tuples
(pairs), and hence not elements of R3. Therefore R2 is not a subset of R3,
and in particular not a linear subspace of R3.

Solution 8: Let T be as in the question. We need to show that T0 = 0.
Here’s one proof. We know from the definition of scalar multiplication
that 0x = 0 for any vector x. Hence, letting x and y be any vectors in RK

and applying the definition of linearity,

T0 = T(0x + 0y) = 0Tx + 0Ty = 0 + 0 = 0

Solution 9: Yes, S must be a linear subspace of RN. To see this, pick any x
and y in S and any scalars α, β. To establish our claim we need to show
that z := αx + βy is in S. To see that this is so observe that by (??) we have
u := αx ∈ S and v := βy ∈ S. By (?) we then have u + v ∈ S. In other
words, z ∈ S as claimed.
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Solution 10: Let xi ∈ S and αi ∈ R for i = 1, 2, 3. We claim that

α1x1 + α2x2 + α3x3 ∈ S (1)

To see this let y := α1x1 + α2x2. By the definition of linear subspaces we
know that y ∈ S. Using the definition of linear subspaces again we have
y + α3x3 ∈ S. Hence (1) is confirmed.

Solution 11: The answer is yes. Here’s one proof: Suppose to the contrary
that {γx1, γx2} is linearly dependent. Then one element can be written as
a linear combination of the others. In our setting with only two vectors,
this translates to γx1 = αγx2 for some α. Since γ 6= 0 we can multiply each
side by 1/γ to get x1 = αx2. But now each xi is a multiple of the other. This
contradicts linear independence of {x1, x2}.

Here’s another proof: Take any α1, α2 ∈ Rwith

α1γx1 + α2γx2 = 0 (2)

We need to show that α1 = α2 = 0. To see this, observe that

α1γx1 + α2γx2 = γ(α1x1 + α2x2)

Hence γ(α1x1 + α2x2) = 0. Since γ 6= 0, the only way this could occur is
that α1x1 + α2x2 = 0. But {x1, x2} is linearly independent, so this implies
that α1 = α2 = 0. The proof is done.

Solution 12: There is an easy way to do this: We know that any linearly
independent set of 3 vectors in R3 will span R3. Since z ∈ R3, this will
include z. So all we need to do is show that X is linearly independent. To
this end, take any scalars α1, α2, α3 with

α1

−4
0
0

+ α2

0
2
0

+ α3

 0
0
−1

 = 0 :=

0
0
0



4



Written as 3 equations, this says that

−4α1 = 0
2α2 = 0
−1α3 = 0

Hence α1 = α2 = α3 = 0, and therefore the set is linearly independent.

Solution 13: By definition, rank(I) is equal to the dimension of the span of
its columns. Its columns are the N canonical basis vectors in RN, which
we know span all of RN. Hence

rank(I) = dim(RN) = N

Solution 14: Let X and S be as in the statement of the question. If span(X) 6=
S, then either span(X) contains a vector not in S, or S contains a vector not
in span(X). The first case is impossible, because X ⊂ S and S is a linear
subspace, and hence any linear combination of elements of X also lies in
S. Therefore the second case must hold. This verifies the existence claim
in the question.

Solution 15: Let {x} where x is a nonzero vector in S. This set is linearly
independent. Indeed, given that x 6= 0, if αx = 0 then we can be certain
that α = 0. Hence {x} satisfies the definition of linear independence.

Solution 16: Let S, X and M be as stated in the question. Suppose to the
contrary that span(X) 6= S. Then, as we saw in an earlier question, there
exists some x ∈ S that does not lie in span(X). It follows from the facts in
lecture 7 that X ∪ {x} is linearly independent. This set is a linearly inde-
pendent subset of S with M + 1 elements. Existence of this set contradicts
the definition of M. Hence span(X) = S as claimed (and X is a basis of
S).
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Solution 17: Let T : RN → R
N be nonsingular and let T−1 be its inverse. To

see that T−1 is linear we need to show that for any pair x, y inRN (which is
the domain of T−1) and any scalars α and β, the following equality holds:

T−1(αx + βy) = αT−1x + βT−1y. (3)

In the proof we will exploit the fact that T is by assumption a linear bijec-
tion.

So pick any vectors x, y ∈ RN and any two scalars α, β. Since T is a bijec-
tion, we know that x and y have unique preimages under T. In particular,
there exist unique vectors u and v such that

Tu = x and Tv = y

Using these definitions, linearity of T and the fact that T−1 is the inverse
of T, we have

T−1(αx + βy) = T−1(αTu + βTv)

= T−1(T(αu + βv))

= αu + βv

= αT−1x + βT−1y.

This chain of equalities confirms (3).
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