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Question 1. Let Ω be a sample space, let P be a probability on Ω, and let
A and B be events. Show that P(A) = P(B) = 0 implies P(A ∪ B) = 0.

Solution to question 1. Let P, A and B be as stated in the question, with
P(A) = P(B) = 0. From the lecture slides we know that P(A ∪ B) ≤
P(A) +P(B) for any A, B. Hence P(A ∪ B) ≤ 0. Since P is a probability,
the inequality P(A∪ B) ≥ 0 also holds. Hence P(A∪ B) = 0, as was to be
shown.

Question 2. Let Ω be a sample space, let P be a probability on Ω, and let
A and B be events satisfying P(A) = 1/2 and P(B) = 2/3. Show that

1. 1/6 ≤ P(A ∩ B)

2. P(A ∩ B) ≤ 1/2

Solution to question 2. Let P, A and B be as stated in the question. From
the lecture slides we have

P(A ∪ B) = P(A) +P(B)−P(A ∩ B)

or, rearranging,

P(A ∩ B) = P(A) +P(B)−P(A ∪ B) (1)

Regarding part 1 of the question, since P(A ∪ B) ≤ 1, or, equivalently,
−P(A ∪ B) ≥ −1, it follows from (1) that

P(A) +P(B)− 1 ≤ P(A ∩ B)

Inserting P(A) = 1/2 and P(B) = 2/3 gives 1/6 ≤ P(A∩ B) as required.
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Regarding part 2, note that B ⊂ A∪ B, so 2/3 = P(B) ≤ P(A∪ B). Hence
−P(A ∪ B) ≤ −2/3, and therefore, using (1),

P(A ∩ B) ≤ P(A) +P(B)− 2/3 = 1/2 + 2/3− 2/3 = 1/2

Question 3. Let Ω be a sample space, let P be a probability on Ω, and let
A and B be events. Show that if A and B are independent, then so are Ac

and Bc.

Solution to question 3. Using various facts from the lectures and indepen-
dence of A and B, we have

P(Ac ∩ Bc) = P(Ac) +P(Bc)−P(Ac ∪ Bc)

= P(Ac) +P(Bc)−P((A ∩ B)c)

= 1−P(A) + 1−P(B)− 1 +P(A ∩ B)
= 1−P(A) + 1−P(B)− 1 +P(A)P(B)
= (1−P(A))(1−P(B))
= P(Ac)P(Bc)

Hence Ac and Bc are independent as claimed.

Question 4. Let Ω be a sample space, let A be any event, let Ac be the
complement and let 1A and 1Ac be the respective indicator functions. Try
to express 1Ac as a function of 1A.

Solution to question 4. The solution is 1Ac = 1− 1A. To show this we just
need to confirm that the left hand side and right hand side agree point-
wise, which means at every ω ∈ Ω. This is true because

ω ∈ Ac =⇒ 1− 1A(ω) = 1− 0 = 1

while
ω ∈ A =⇒ 1− 1A(ω) = 1− 1 = 0

These values are the same as for 1Ac(ω).
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Question 5. Suppose we have two coins, one of which is fair (with prob-
ability of heads = 1/2) and one of which is rigged, with probability of
heads = 1/4. We don’t know which is which, and there is no obvious vi-
sual difference between the coins. One of the coins is flipped and lands on
heads. What is the probability that this coin is the fair coin?

Solution to question 5. Let H represent heads for this coin, F represent fair
coin and R represent rigged coin. Using Bayes’ theorem and the law of
total probability, we have

P(F |H) =
P(H | F)P(F)

P(H)

=
P(H | F)P(F)

P(H | F)P(F) +P(H | R)P(R)

Since the coin was selected at random, P(F) = P(H) = 1/2. Plugging in
the rest of the numbers gives

P(F |H) =
1
2 ×

1
2

1
2 ×

1
2 +

1
4 ×

1
2

=
2
3

Question 6. Let X be any random variable and let Y := exp(X). Show
carefully that

1. y ≤ 0 implies P{Y ≤ y} = 0

2. P{Y > 0} = 1

Solution to question 6. Let X and Y be as described. Regarding part 1, if
y ≤ 0, then exp(x) > y for any x ∈ R, so

{Y ≤ y} = {exp(X) ≤ y} = {ω ∈ Ω : exp(X(ω)) ≤ y} = ∅

Since P(∅) = 0 we have P{Y ≤ y} = 0.

Regarding part 2, if we set y = 0 in part 1 we get P{Y ≤ 0} = 0. Since

{Y > 0} = {Y ≤ 0}c
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we have
P{Y > 0} = 1−P{Y ≤ 0} = 1− 0 = 1

Question 7. Let X ∼ F and let Y := exp(X). Let G be the distribution of
Y. Show that

G(y) =

{
0 if y ≤ 0
F(ln(y)) if y > 0

Solution to question 7. Let X and Y be as described and let G be the cdf of
Y. If y ≤ 0, then

G(y) = P{Y ≤ y} = 0

as shown above. On the other hand, if y > 0, then

G(y) = P{Y ≤ y} = P{exp(X) ≤ y} = P{X ≤ ln(y)}

This equals F(ln(y)), as was to be shown.

In the lectures it was shown that if X is a random variable with den-
sity p then the distribution function F of X is differentiable and satisfies
F′(x) = p(x) at every x such that p is continuous. In the next question you
are asked to show a partial converse. Feel free to appeal to the Fundamen-
tal Theorem of Calculus, which is regarded as part of your prerequisite
knowledge for this course. Also, it might help you to know that the inte-
gral of a function f over all of R satisfies∫ ∞

−∞
f (x)dx = lim

n→∞

∫ n

−n
f (x)dx (2)

Question 8. Let X be a random variable with distribution function F.
Show that if F is differentiable on R then X has a density.

Solution to question 8. By the definition of the statement “X has a density"
from the lecture slides, we need to show the existence of a density p such
that

P{a < X ≤ b} =
∫ b

a
p(x)dx (3)
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for any a < b. As a candidate for p take p = F′. This function exists
since F is differentiable. By the Fundamental Theorem of Calculus and the
definition of F we have, for any a < b,∫ b

a
p(x)dx = F(b)− F(a) (4)

It now follows from the fact F(b)− F(a) = P{a < X ≤ b} that (3) is valid.

The only thing we haven’t verified is that p is in fact a density. To see this
observe that p(x) ≥ 0 for all x, since p = F′ and F is increasing. Moreover,
in light of (4), (2) and the properties of cdfs,∫ ∞

−∞
p(x)dx = lim

n→∞
(F(n)− F(−n)) = 1− 0 = 1

Question 9. Let X ∼ F where F is the Cauchy cdf, and let Y := 2X. Show
that the density of Y is

g(y) =
1

(2π)(1 + (y/2)2)

Solution to question 9. Let X, F and Y be as described and let G be the cdf
of Y. We have

G(y) = P{Y ≤ y} = P{2X ≤ y} = P{X ≤ y/2} = F(y/2)

Since F is the Cauchy cdf this translates to

G(y) =
arctan(y/2)

π
+

1
2

Differentiating gives

g(y) = G′(y) =
1

(2π)(1 + (y/2)2)

as claimed.
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Question 10. Find the expected value of the random variable X with den-
sity

p(x) := 1{−2 ≤ x ≤ 4} |x|
10

Solution to question 10. The expectation is

E [X] =
∫ ∞

−∞
xp(x)dx

=
∫ 4

−2
x
|x|
10

dx

=
∫ 0

−2
x
−x
10

dx +
∫ 4

0
x

x
10

dx

=
−1
10

∫ 0

−2
x2dx +

1
10

∫ 4

0
x2dx =

28
15

Question 11. Let p : R2 → R be defined by

p(x, y) =

{
exp(x + y) if x ≤ 0 and y ≤ 0
0 otherwise

Let (X, Y) be a random vector with joint density p. Show that X and Y are
independent.

Solution to question 11. Let φX be the marginal density of X and φY be the
marginal density of Y. It suffices to show that

p(x, y) = φX(x)φY(y) for all (x, y) ∈ R2 (5)

To see that this is the case, first we obtain the marginal distributions by
integrating out the other variable. To start let x ≤ 0 and observe that

φX(x) =
∫ 0

−∞
p(x, y)dy =

∫ 0

−∞
exeydy = ex

∫ 0

−∞
eydy = ex

∫ ∞

0
e−ydy = ex

On the other hand, if x > 0, then p(x, y) = 0 for any y, and hence

φX(x) =
∫ 0

−∞
p(x, y)dy = 0
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In summary,

φX(x) =

{
ex if x ≤ 0
0 otherwise

A similar argument gives

φY(y) =

{
ey if y ≤ 0
0 otherwise

It then follows easily that (5) is valid.
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