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Comments

This third and last set of solved exercises is to help you prepare for the
final exam. There is a mix of topics. It is possible to solve these questions
using only basic algebra, a bit of logic and the facts and definitions from
the slides. The solutions to the exercises are in this same file, at the end.

Some of the questions are harder than what you can expect for exam ques-
tions. This reflects the fact that you won’t solve them under exam condi-
tions. Don’t be afraid to spend a while on each question. Write down the
definition of each property you need to prove. Review the lecture slides for
any facts connected to these definitions. If you still can’t make progress,
think what would happen if the property in question failed. Would that
lead to some kind of contradiction?

Similarly, if you end up having to look up the answer to some of the ques-
tions don’t be too concerned. (The last couple of questions in particular are
very challenging.) But do review questions you couldn’t get out later on.
For example, try to reproduce the argument the next day without looking.

For results connected to analysis, sketching can be helpful. If you’re asked
to show that a certain set is open, try to sketch it. Then pick any point in
that set and try to think why it should be interior. I also recommend that
you first read over some of the simple proofs in lecture 16, say, in order to
become more comfortable with the style of argument.

Note that properties you are asked to show will sometimes have a “there
exists" qualifier. For example, to show that a point x is interior to a set A,
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you need to show that “there exists" an ε > 0 such that Bε(x) ⊂ A. When
attempting to show this property, you need to construct a specific ε using
the information you have at hand.

Finally, hints are in footnotes, which makes for an excess of superscripts
with a variety of meanings (powers, products, footnotes, etc.). I couldn’t
figure out a better way to arrange the information so please read carefully.

Questions

Question 1. Show that the function f (x) = −|x| from R to R is concave.

Question 2. Let A be the 1× 1 matrix (a). Give a necessary and sufficient
condition on a (that is, an “if and only if" condition on a) under which A
is nonsingular.

Question 3. Consider the function f from R to R defined by

f (x) = (cx)2 + z

Give a necessary and sufficient (if and only if) condition on c under which
f has a unique minimizer.

Question 4. Let C be an N×K matrix, let z ∈ R and consider the function
f from RK to R defined by

f (x) = x′C′Cx + z

Show that f has a unique minimizer on RK if and only if C has linearly
independent columns.1

1Hint: Obviously, you should draw intuition from the preceding question. Also,
what does linear independence of the columns of C say about the vector Cx for different
choices of x?
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Question 5. Show that the Cobb-Douglas production function f (k, `) =

kα`β from A := [0, ∞)× [0, ∞) to R is continuous everywhere on A.2

Question 6. Let β ∈ (0, 1). Show that the utility function U(c1, c2) =√
c1 + β

√
c2 from A := [0, ∞)× [0, ∞) to R is continuous everywhere on

A.

Question 7. Let B be the set of all consumption pairs (c1, c2) such that
c1, c2 ≥ 0 and p1c1 + p2c2 ≤ m. Here p1, p2 and m are positive constants.
Show that B is a closed subset of R2.3

Question 8. Consider the maximization problem

max
c1,c2

(
√

c1 + β
√

c2)

subject to c1, c2 ≥ 0 and p1c1 + p2c2 ≤ m. Here p1, p2 and m are nonnega-
tive constants, and β ∈ (0, 1). Show that this problem has a solution if and
only if p1 and p2 are both strictly positive.

Question 9. Let A be any square matrix. Show that A and A′ share the
same eigenvalues.

Question 10. Show that, for conformable and suitably invertible matrices
A, U and V, we have

(A + UV)−1 = A−1 −A−1U
(

I + VA−1U
)−1

VA−1

You don’t need to prove that matricies are invertible, just that the expres-
sion for the inverse is valid.4

2Hint: You can use the fact that, for any a ∈ R the function g(x) = xa is continuous at
any x ∈ [0, ∞). This was mentioned in passing in lecture 17. Also, remember that norm
convergence implies element by element convergence.

3Hint: Weak inequalities are preserved under limits!
4Hint: Look at the definition of the inverse and any subsequent facts. What is the

minimum you need to prove to show that B is the inverse of A?
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Question 11. Show that for any vector x = (x1, . . . , xN) ∈ RN the inequal-
ity ∣∣∣∣∣ N

∑
n=1

xn

∣∣∣∣∣ ≤ ‖x‖√N

always holds.5

Question 12. Let D and A be square matrices. Let Q := A′DA. Show that
if D is positive definite and A is nonsingular, then Q is positive definite.

Question 13. Show directly, using the “ε, N" definition of convergence,
that if {xn} is a sequence in R with xn → x for some x ∈ R, and if r is any
constant in R, then rxn → rx.6

Question 14. Let A be a nonempty bounded set and let B := {b ∈ R : b =

2a for some a ∈ A}. Obtain sup B in terms of sup A. Justify your answer.

Question 15. Find the infimum of the following sets, justifying your an-
swer

1. {1/n : n ∈ N}

2. Q, the rational numbers

Question 16. Prove that {xn} defined by xn = (n + 1)/n is a Cauchy
sequence. (Use any fact from the slides that will make your job easier.)

Question 17. Let T : RK → RN be a linear function. Show that the range
of T is a linear subspace of RN.

Question 18. Is it true that for each square matrix A we have det(A2) =

det(A)2?

5Hint: Look carefully at the properties of norms that we learned about when we first
introduced norms in lecture 6. Four major properties were stated on one of the slides.
One of the four properties will be very helpful.

6Hint: If you have trouble, try treating the cases r = 0 and r 6= 0 separately.
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Question 19. Let X and W be independent random variables. Let ρ be a
number satisfying |ρ| < 1. Show that if X ∼ N(0, 1), W ∼ N(0, 1) and

Y = ρX +
√

1− ρ2W

then X, W and Y are identically distributed.

Question 20. The version of the Intermediate Value Theorem in the lecture
slides stated that if f : [a, b]→ R is continuous and f (a) < 0 < f (b), then f
has a zero in [a, b]. Using this fact, show that if f : [a, b]→ R is continuous
and f (b) < 0 < f (a), then f has a zero in [a, b].7

Question 21. Let A be a subset of R. Show that if max A exists then
sup A = max A.

Question 22. It is a fact that a subset A ofRK is closed and bounded ⇐⇒
every sequence in A has a subsequence which converges to a point of A
Prove the =⇒ part of this claim when A ⊂ R.8

Remark: Sets with the property that every sequence in the set has a subse-
quence which converges to a point of the set are called compact.

Question 23. Let D be all x ∈ RN such that are nonnegative and sum to
one. That is, x ≥ 0 and x′1 = 1. (This set is called the “unit simplex" in
RN.) Let T : D → D be a continuous function. Show that T has at least
one fixed point inD.9

For the next question we note that a function f from a subset of R into R
is called strictly increasing if x < y =⇒ f (x) < f (y).

7Hint: A good approach is to come up with a transformation of f that (i) satisfies the
conditions of the Intermediate Value Theorem, and (ii) has the same zeros as f . Can you
think of one? Try sketching the problem.

8Hint: Use the Bolzano-Weierstrass theorem.
9Hint: You are only asked to show existence of a fixed point, not uniqueness, etc. So

look in the lecture slides for a fixed point result that gives you only existence. Then try to
check the conditions one by one.
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Question 24. Let A ⊂ RK, let

• f : A→ B ⊂ R

• h : B→ R and g := h ◦ f

In the lecture we stated the fact that if h is strictly increasing, then

argmax
x∈A

f (x) = argmax
x∈A

g(x)

We also proved the ⊂ part of this claim. (Remember that these are sets,
so equality is the same as both ⊂ and ⊃.) Now prove the other direction.
That is, show that, under the stated assumptions,

a∗ ∈ argmax
x∈A

g(x) =⇒ a∗ ∈ argmax
x∈A

f (x)

Question 25. Show that (0, ∞) is an open subset of R.

Question 26. Show that S1 := {(x1, x2) ∈ R2 : x1 > 0} is an open subset
of R2.

Question 27. Although it wasn’t stated in the slides, it is a well known fact
that the intersection of any two open sets is open. Use this fact to prove
that

P := {(x1, x2) ∈ R2 : x1 > 0 and x2 > 0}

is an open set.

Question 28. Let f : [a, b] → R. Recall the statement of the Intermediate
Value Theorem from the lecture slides: If f (a) < 0 < f (b) and f is contin-
uous, then f has a zero in [a, b]. Let’s walk through the argument, breaking
it down into exercises. For starters, define

• Q := {x ∈ [a, b] : f (x) < 0}

• x̄ := sup Q
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Show the following, which together prove that f (x̄) = 0:

1. x̄ exists (and is not ∞)

2. f (x̄) ≤ 0

3. f (x̄) ≥ 0

Hints:

• For 2, recall from the lecture slides that if s is the supremum of a set
S, then there exists a sequence in that set converging up to s. If S = Q
and s = x̄, what properties would such a sequence have? Also, you
need to use the fact that f is continuous.

• For 3, suppose instead that f (x̄) < 0. Intuitively, since f is contin-
uous and therefore contains no jumps, we could then take a point y
slightly larger than x̄ but still realizing f (y) < 0. This y would con-
tradict the definition of x̄ as the supremum of Q. Can you formalize
this argument? Perhaps by considering sequences?

Question 29. The reverse triangle inequality tells us that, for any two vec-
tors x and y in RK, we have

|‖x‖ − ‖y‖| ≤ ‖x− y‖

Try to prove this inequality using your knowledge of norms.10

Question 30. Show that the function f (x) = ‖x‖ is continuous on RK.11

Question 31. One of the claims in the lecture slides was that a continuous
function on a closed bounded set has a maximizer and a minimizer (the

10Hint: Use the triangle inequality and the “add and subtract strategy" (e.g., x = x−
y + y and so on).

11Hint: Use the reverse triangle inequality.
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Weierstrass extreme value theorem). This result turned on the fact that if
f : A→ R is continuous and A is closed and bounded, then so is

f (A) := { f (x) : x ∈ A}

Try to prove this. Use the fact from question 22 that A ⊂ RK is closed and
bounded if and only if every sequence in A has a subsequence converging
to a point in A.

Question 32. Suppose that {xn} is a bounded sequence inR that does not
converge. Show that {xn} has at least two subsequences that converge to
different limits.

Turn over for solutions
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Solutions

Solution to question 1. Proof 1: We already showed that f (x) = ‖x‖ is con-
vex onRK, and that f convex implies − f concave. Setting K = 1 gives the
desired result.

Proof 2 (direct proof): Pick any x, y ∈ R and any λ ∈ [0, 1]. By the triangle
inequality, we have

|λx + (1− λ)y| ≤ |λx|+ |(1− λ)y|

and hence

−|λx + (1− λ)y| ≥ −|λx| − |(1− λ)y| = −λ|x| − (1− λ)|y|

That is, f (λx + (1− λ)y) ≥ λ f (x) + (1− λ) f (y). Hence f is concave as
claimed.

Solution to question 2. The condition for nonsingularity of (a) is a 6= 0.
There are many ways we could show this. One is that A is nonsingular
when Ax = 0 =⇒ x = 0. Here this translates to ax = 0 =⇒ x = 0.
The question then becomes, for what a is this implication true? It is true
exactly when a 6= 0, for if a 6= 0 and ax = 0, the only possibility is that
x = 0.

Solution to question 3. The function f has a unique minimizer at x∗ = 0 if
and only if c 6= 0. Here’s one proof: If c 6= 0 then the function is strictly
convex. Moreover, it is stationary at x∗ = 0. Hence, by our facts on min-
imization under convexity, x∗ is the unique minimizer. The condition is
necessary and sufficient because if c = 0, then f is a constant function,
which clearly does not have a unique minimizer.

Here’s a second (more direct) proof that the correct condition is c 6= 0.
Suppose first that c 6= 0 and pick any x ∈ R. We have

f (x) = (cx)2 + z ≥ z = f (0)
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This tells us that x∗ = 0 is a minimizer. Moreover,

f (x) = (cx)2 + z > z = f (0) whenever x 6= x∗

Hence x∗ = 0 is the unique minimizer.

Suppose next that x∗ = 0 is the unique minimizer. Then it must be that
c 6= 0, for if c = 0 then f (x) = f (x∗) for every x ∈ R.

Solution to question 4. Suppose first that C has linearly independent columns.
We claim that x = 0 is the unique minimizer of f on RK. To see this ob-
serve that if x = 0 then f (x) = z. On the other hand, if x 6= 0, then, by
linear independence, Cx is not the origin, and hence ‖Cx‖ > 0. Therefore

f (x) = x′C′Cx + z = (Cx)′Cx + z = ‖Cx‖2 + z > z

Thus x = 0 is the unique minimizer of f on RK as claimed.

Since this is an “if and only if" proof we also need to show that when f
has a unique minimizer onRK, it must be that C has linearly independent
columns. Suppose to the contrary that the columns of C are not linearly
independent. We will show that multiple minimizers exist.

Since f (x) = ‖Cx‖2 + z it is clear that f (x) ≥ z, and hence x = 0 is one
minimizer. (At this point, f evaluates to z.) Since the columns of C are not
linearly independent, there exists a nonzero vector y such that Cy = 0. At
this vector we clearly have f (y) = z. Hence y is another minimizer.

Solution to question 5. Let (k, `) be any point in A, and let {(kn, `n)} be any
sequence converging to (k, `) in the sense of convergence in R2. We wish
to show that

f (kn, `n)→ f (k, `)

Since (kn, `n) → (k, `) in R2, we know from the facts on convergence in
norm that the individual components converge in R. That is,

kn → k and `n → ` (1)
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We also know from the facts that, for any a, the function g(x) = xa is
continuous at x. It follows from the definition of continuity and (1) that
kα

n → kα and `
β
n → `β. Moreover, we know that, for any sequences {yn}

and {zn}, if yn → y and zn → z, then ynzn → yz. Hence

kα
n`

β
n → kα`β

That is, f (kn, `n)→ f (k, `). Hence f satisfies the definition of continity.

Solution to question 6. The proof is very similar to the proof of continuity of
the Cobb-Douglas production function given above, and hence is omitted.

Solution to question 7. To show that B is closed, we need to show that the
limit of any sequence contained in B is also in B. To this end, let {xn} be
an arbitrary sequence in B coverging to a point x ∈ R2. Since xn ∈ B for
all n we have xn ≥ 0 in the sense of the vector inequality (lecture 17) and
x′np ≤ m, where p = (p1, p2). We need to show that the same is true for x.

Since xn → x, we have x′np→ x′p. Since limits preserve weak inequalities
and x′np ≤ m for all n, we have x′p ≤ m. Hence it remains only to show
that x ≥ 0. Again using the fact that weak inequalities are preserved under
limits, combined with xn ≥ 0 for all n, gives x ≥ 0 as required.

Solution to question 8. As we have seen, U(c1, c2) =
√

c1 + β
√

c2 is contin-
uous and

B := {(c1, c2) : ci ≥ 0 and p1c1 + p2c2 ≤ m}

is closed. Hence, by the Weierstrass extreme value theorem, a maximizer
will exist whenever B is bounded. If p1 and p2 are strictly positive then B
is bounded. This is intuitive but we can also show it formally by observing
that (c1, c2) ∈ B implies ci ≤ m/pi for i = 1, 2. Hence

c := (c1, c2) ∈ B =⇒ ‖c‖ ≤ M :=

√(
m
p1

)2

+

(
m
p2

)2
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We also need to show that if one price is zero then no maximizer ex-
ists. Suppose to the contrary that p1 = 0. Intuitively, no maximizer ex-
ists because we can always consumer more of good one, thereby increas-
ing our utility. To formalize this we can suppose that a maximizer exists
and derive a contradiction. To this end, suppose that c∗ = (c∗1 , c∗2) is a
maximizer of U over B. Since p1 = 0, the fact that (c∗1 , c∗2) ∈ B implies
c∗∗ := (c∗1 + 1, c∗2) ∈ B. Since U is strictly increasing in its first argument,
we also have U(c∗∗) > U(c∗). This contradicts the statement that c∗ is a
maximizer of U over B.

Solution to question 9. The eigenvalues of A are exactly the values of λ that
solve

det(A− λI) = 0

Let λ be a solution to this equation. Recalling that the determinant is un-
affected by the transpose operation, this implies that

det((A− λI)′) = 0

Using symmetry of I and other basic rules for transposes, we then have

det(A′ − λI′) = det(A′ − λI) = 0

Hence λ is an eigenvalue of A′.

We have shown that any eigenvalue of A is an eigenvalue of A′. The same
argument works in the other direction. This proves the claim.

Solution to question 10. It suffices to show that the product of the right and
left hand sides is the identity. We have

(A + UV)

[
A−1 −A−1U

(
I + VA−1U

)−1
VA−1

]
= I + UVA−1 − (U + UVA−1U)(I + VA−1U)−1VA−1

= I + UVA−1 −U(I + VA−1U)(I + VA−1U)−1VA−1

= I + UVA−1 −UVA−1 = I
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Solution to question 11. The result follows immediately from the Cauchy-
Schwarz inequality |x′y| ≤ ‖x‖‖y‖ after setting y = 1.

Solution to question 12. Pick any nonzero x. We aim to show that x′Qx > 0
under the stated assumptions.

Since x is not the zero vector, neither is y := Ax (otherwise independence
of the columns of A—and hence nonsingularity—would be contradicted).
As a result, using positive definiteness of D,

x′Qx = x′A′DAx = y′Dy > 0

The proof is done.

Solution to question 13. Let {xn}, x and r be as in the statement of the ques-
tion. Let yn = rxn and y = rx. If r = 0, then the claim is that 0→ 0, which
is trivial. So suppose instead that r 6= 0. Fix any ε > 0. We aim to show
existence of an N ∈ N such that

n ≥ N =⇒ |yn − y| < ε (2)

To this end, observe that since xn → x, we can select an N ∈ N such that

n ≥ N =⇒ |xn − x| < ε

|r|

(The right hand side is finite because r 6= 0.) From this it follows that

n ≥ N =⇒ |r||xn − x| < ε

It is not hard to see that N satisfies (2).

Solution to question 14. Let A and B be as stated in the question. We claim
that sup B = b̄ where b̄ := 2 sup A. According to the definition of the
supremum, to prove this we need to show that

1. b ≤ b̄ for all b ∈ B
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2. b̄ ≤ u for all u ∈ U(B)

Regarding part 1, pick any b ∈ B. By definition, b = 2a for some a ∈ A.
We know that a ≤ sup A and hence 2a ≤ 2 sup A. Therefore b = 2a ≤ b̄,
as was to be shown.

Regarding part 2, take any u ∈ U(B). For any a ∈ A we have 2a ∈ B
and hence 2a ≤ u. Therefore a ≤ u/2 for all a ∈ A, and hence u/2 is an
upper bound of A. Therefore sup A ≤ u/2. Rearranging gives b̄ ≤ u, as
claimed.

Solution to question 15. Regarding part 1, the infimum of A := {1/n : n ∈
N} is 0. Clearly 0 is a lower bound. Moreover, if ` is any lower bound of
A, then ` ≤ 1/n for all n. Since the weak inequality is preserved under
limits, this gives ` ≤ 0. In other words, 0 is the greatest lower bound.

Regarding part 2, recall that between any two real numbers we can find a
rational number. It follows that the set of lower bounds of Q is the empty
set, since any ` ∈ R has a rational number q with q < `. Hence, by defini-
tion, infQ = −∞.

Solution to question 16. As discussed in the slides, every convergent sequence
is Cauchy, so it suffices to show that {xn} is convergent, and in particular
that xn → 1. To see this, observe that

xn =
n + 1

n
=

1 + 1/n
1

.

Since 1/n→ 0, it follows that xn → 1.

Solution to question 17. Let S := rng(T). By definition,

S = {y ∈ RN : y = Tx for some x ∈ RK}

Let y1 and y2 be two vectors in S and let α and β be any two scalars. We
need to show that αy1 + βy2 ∈ S, or, equivalently, that

∃ z ∈ RK s.t. Tz = αy1 + βy2
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To see that this is so, observe that, since each yi is in S, we must have
vectors xi ∈ RK such that Txi = yi for i = 1, 2. Let z := αx1 + βx2. Then,
by linearity of T,

Tz = T(αx1 + βx2) = αTx1 + βTx2 = αy1 + βy2

as was to be shown.

Solution to question 18. Yes, this is true. We know that for any square and
conformable A and B we have det(AB) = det(A)det(B). Setting B = A
proves the claim.

Solution to question 19. We need to show that Y ∼ N(0, 1). Since Y is a
linear combination of normal random variables it must itself be normal.
Hence it remains only to show that E [Y] = 0 and var[Y] = 1. Regarding
the first equality, linearity of E gives

E [Y] = ρE [X] +
√

1− ρ2E [W] = 0

Regarding the second, using our rules for variance of linear combinations
and the fact that X and Y are independent, we have

var[Y] = ρ2 var[X] + (1− ρ2) var[W] = 1

Solution to question 20. Let f : [a, b] → R be continuous with f (b) < 0 <

f (a). If we define g = − f then g(a) < 0 < g(b). Moreover, g is con-
tinuous, since multiplication of continuous functions by scalars (in this
case−1) preserves continuity. Hence, by the Intermediate Value Theorem,
there exists a x̄ ∈ [a, b] with g(x̄) = 0. Clearly f (x̄) = 0 also holds, so f
has a zero in [a, b].

Solution to question 21. Let a∗ := max A. We claim that sup A = a∗. To
show this we need to show that
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1. a∗ is an upper bound of A

2. a∗ ≤ u for any other upper bound u

Since a∗ = max A we have a ≤ a∗ for all a ∈ A. Hence statement 1 holds.
Since a∗ = max A we also have a∗ ∈ A. If u is any upper bound of A
then, by definition, a ≤ u for all a ∈ A, and, in particular, a∗ ≤ u. Hence
statement 2 holds as well.

Solution to question 22. Let A ⊂ R be closed and bounded. Take any se-
quence {xn} contained in A. Since A is bounded, {xn} is bounded, and
hence, by the Bolzano-Weierstrass theorem, it has a convergent subse-
quence. Since the subsequence is also contained in A and A is closed,
it must be that the limit lies in A.

Solution to question 23. By the Brouwer fixed point theorem, since T is as-
sumed to be continuous, it suffices to show thatD is closed, bounded and
convex. The proof thatD is closed was given for the N = 2 case in the lec-
tures and the general argument is no different. To see thatD is convex, it is
enough to show thatD is the intersection of two convex sets. We can write
D as D = C ∩ P where C := {x ∈ RN : x′1 = 1} and P is the “positive
cone" {x ∈ RN : x ≥ 0}. We showed in the lectures that P is convex. To
see that C is convex, let x1 and x2 be two elements of C. Fixing λ ∈ [0, 1],
we claim that y := λx1 + (1− λ)x2 ∈ C. This is clear since

y′1 = (λx1 + (1− λ)x2)
′1

= λx′11 + (1− λ)x′21 = λ + (1− λ) = 1

It follows that C and henceD is convex.

It only remains to show that D is bounded. To see this, observe that each
element of x ∈ D is necessarily weakly less than one, and hence, for such
an x,

‖x‖ ≤

√√√√ N

∑
n=1

12 =
√

N
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HenceD is also bounded.

Solution to question 24. Let A, f , g and h be as in the statement of the prob-
lem. Let a∗ ∈ argmaxx∈A g(x). Pick any x ∈ A. By definition we have

h( f (x)) ≤ h( f (a∗)) (3)

Since h is strictly increasing, it follows that f (x) ≤ f (a∗), because other-
wise the inequality in (3) could not be valid.

We have now shown that f (x) ≤ f (a∗) for any x ∈ A. Hence a∗ ∈
argmaxx∈A f (x) as claimed

Solution to question 25. We did something similar in the slides but let’s give
a direct proof in any case. We need to show that any arbitrary point x
in this set (0, ∞) is interior. That is, given any strictly positive number
x, there is an ε > 0 such that every element of Bε(x) is strictly positive.
Consider the value ε := x/2. If y ∈ Bε(x), then y > x− ε = x/2 > 0. This
proves the claim.

Solution to question 26. We need to show that every point in S1 is interior
to S1. To this end, pick any x = (x1, x2) ∈ S1. We need to exhibit an
ε > 0 such that Bε(x) ⊂ S1. Consider ε := x1/2. Since (x1, x2) ∈ S1

we have x1 > 0 and hence ε is indeed a positive number. Now take any
y = (y1, y2) ∈ Bε(x). We claim that y ∈ S1 also holds.

To see this, observe that

(y1, y2) ∈ Bε(x) =⇒
√
(y1 − x1)2 + (y2 − x2)2 < ε

=⇒ (y1 − x1)
2 + (y2 − x2)

2 < ε2

=⇒ (y1 − x1)
2 < ε2

=⇒ |y1 − x1| < ε (take the square root)

=⇒ x1 − ε < y1 < x1 + ε

=⇒ x1/2 < y1

Hence y1 > 0, and (y1, y2) ∈ S1 as claimed.

17



Solution to question 27. P can be written as P = S1∩S2 where S1 := {(x1, x2) ∈
R2 : x1 > 0} and S2 := {(x1, x2) ∈ R2 : x2 > 0}. We showed above that
S1 is open. The proof that S2 is open is essentially identical. Hence P is the
intersection of two open sets, and therefore open.

Solution to question 28. For part 1 of the question, note that Q is bounded,
since it lies in the bounded set [a, b]. Every bounded set has a finite supre-
mum.

For part 2 we need to show that f (x̄) ≤ 0. Recall from the lecture slides
that if s is the supremum of a set, then there exists a sequence in that set
converging up to s. In particular, since x̄ = sup Q, there exists {xn} ⊂ Q
with xn → x̄. By the assumed properties of xn and f we have

1. f (xn) ≤ 0 for all n, and

2. f (xn)→ f (x̄).

(Actually we have the stronger property f (xn) < 0 for all n but we don’t
need it for this part.) Weak inequalities are preserved under limits, so
f (x̄) ≤ 0.

For part 3 we need to show that f (x̄) ≥ 0. Suppose to the contrary that
f (x̄) < 0. Then x̄ could not be the supremum of Q. Indeed, the sequence
xn := x̄ + 1/n converges down to x̄, and hence f (xn) → f (x̄). Thus
f (xn) is eventually in every ε-ball containing f (x̄). It follows (why?) that
f (xn) < 0 for some n. Thus, xn = x̄ + 1/n is in Q. But now we have
a point in Q strictly larger than x̄. This contradicts the assumption that
x̄ = sup Q.

Solution to question 29. From the triangle inequality we have

‖x‖ = ‖x− y + y‖ ≤ ‖x− y‖+ ‖y‖

It follows that
‖x‖ − ‖y‖ ≤ ‖x− y‖
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A similar argument reversing the roles of x and y gives

‖y‖ − ‖x‖ ≤ ‖x− y‖

Combining these inequalities gives

−‖x− y‖ ≤ ‖x‖ − ‖y‖ ≤ ‖x− y‖

In other words,
|‖x‖ − ‖y‖| ≤ ‖x− y‖

Solution to question 30. Pick any x ∈ RK and take any xn → x. Since xn →
x we have ‖xn − x‖ → 0. Moreover,

| f (xn)− f (x)| = |‖xn‖ − ‖x‖| ≤ ‖xn − x‖

It follows that f (xn) → f (x). Hence f is continuous at x. Since x was
arbitrary, we conclude that f is continuous everywhere.

Solution to question 31. Let A and f be as described in the question. As
discussed in the question statement, subsets ofRK are closed and bounded
if and only if each sequence in the set has a subsequence converging to a
point in the set. Hence it suffices to show that every sequence in f (A) has
a subsequence converging to a point in f (A).

To see this, Let {yn} be a sequence in f (A). By definition, we can take
{xn} ⊂ A with f (xn) = yn for each n. Since A itself is closed and bounded,
there exists subsequence {xnk} with xnk → x ∈ A. By continuity of f we
have f (xnk) → f (x). Since x ∈ A we have f (x) ∈ f (A). In summary, the
subsequence ynk = f (xnk) converges to a point in f (A). We conclude that
f (A) is closed and bounded.

Solution to question 32. Since {xn} is bounded, we know from the Bolzano-
Weierstrass theorem that this sequence possesses at least one convergent
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subsequence. Take any such subsequence {xnk}, converging to some point
x. Because the whole sequence does not converge, it does not converge to
x, and hence it must be the case that for some ε-ball Bε(x) around x, the
sequence leaves this ε-ball infinitely often. It follows that we can find a sec-
ond subsequence of {xn} that lies entirely outside Bε(x). Moreover, this
second subsequence is clearly bounded, and hence itself contains a con-
vergent subsequence. The convergent subsequence converges to a point
other than x because it lies outside Bε(x). We have now found a second
convergent subsequence of {xn}, converging to a different point. Hence
the claim is verified.
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