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Abstract. Researchers repeatedly observed that the module system of
ML and the type class mechanism of Haskell are related. So far, this
relationship has received little formal investigation. The work at hand
fills this gap: It introduces type-preserving translations from modules to
type classes and vice versa, which enable a thorough comparison of the
two concepts.

1 Introduction

On first glance, module systems and type classes appear to be unrelated program-
ming-language concepts: Module systems allow large programs to be decomposed
into smaller, relatively independent units, whereas type classes [1,2] provide a
means for introducing ad-hoc polymorphism; that is, they give programmers
the ability to define multiple functions or operators with the same name but
different types. However, it has been repeatedly observed [3,4,5,6,7,8] that there
is some overlap in functionality between the module system of the programming
language ML [9], one of the most powerful module systems in widespread use,
and the type class mechanism of the language Haskell [10], which constitutes a
sophisticated approach to ad-hoc polymorphism.

It is natural to ask whether these observations rest on a solid foundation, or
whether the overlap is only superficial. The standard approach to answer such
a question is to devise two formal translations from modules to type classes and
vice versa. The translations then pinpoint exactly the features that are easy,
hard, or impossible to translate; thereby showing very clearly the differences
and similarities between the two concepts.

Such a constructive comparison between ML modules and Haskell type classes
is particularly interesting because the strength of one language is a weak point
of the other: ML has only very limited support for ad-hoc polymorphism, so
translating Haskell type classes to ML modules could give new insights on how
to program with this kind of polymorphism in ML. Conversely, the Haskell mod-
ule system is weak, so an encoding of ML’s powerful module system with type
classes could open up new possibilities for modular programming in Haskell.

Contributions. Following the path just described, we make four contributions:



– We devise two formal translations from ML modules to Haskell type classes
and vice versa, prove that the translations preserve type correctness, and
provide implementations for both.

– We use the insights obtained from the translations to compare ML modules
with Haskell type classes thoroughly.

– We investigate if and how the techniques used to encode ML modules in
terms of Haskell type classes and vice versa can be exploited for modular
programming in Haskell and for programming with ad-hoc polymorphism in
ML, respectively.

– We suggest a lightweight extension of Haskell’s type class system that enables
type abstraction.

Outline. We start with examples that motivate the key ideas behind the trans-
lations from ML modules to Haskell type classes (Sec. 2) and from Haskell type
classes to ML modules (Sec. 3). We then sketch the formalization and implemen-
tation of the translations (Sec. 4). Next, we discuss similarities and differences
between ML modules and Haskell type classes (Sec. 5). Finally, we compare with
related work (Sec. 6) and conclude (Sec. 7).

2 From Modules to Classes

The idea of the translation from ML modules to Haskell type classes is the follow-
ing: signatures are modeled as type class declarations, structures and functors
are translated into instance declarations, and type and value components of
signatures and structures are mapped to associated type synonyms [6] and type
class methods, respectively. We now substantiate the idea by presenting example
translations of signatures and structures (Sec. 2.1), of abstract types (Sec. 2.2),
and of functors (Sec. 2.3). Next, we provide a summary (Sec. 2.4). Finally, we
elaborate on alternative translation techniques (Sec. 2.5).3

2.1 Translating Signatures and Structures

Our first example is shown in Fig. 1. The ML code defines a structure IntSet,
which implements sets of integers in terms of lists. The signature of IntSet is
inferred implicitly in ML; however, we represent it explicitly as a type class
SetSig in Haskell. The type declarations in this class introduce two associated
type synonyms Elem a and Set a. The identities of such type synonyms depend
on a particular instantiation of the class variable a. Hence, concrete definitions
for Elem and Set are deferred to instance declarations of SetSig.

3 We use Standard ML in this section; the Haskell code runs under GHC’s [11] latest
development version (after replacing abstype with type). Throughout the paper, we
assume an ML function any : (’a -> bool) -> ’a list -> bool corresponding
to Haskell’s standard function any :: (a -> bool) -> [a] -> Bool. Moreover, we
rely on functions intEq, intLt, and stringEq for comparing integers and strings.
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MLstructure IntSet = struct type elem = int type set = elem list

val empty = [] fun member i s = any (intEq i) s

fun insert i s = if member i s then s else (i::s)

end

Haskellclass SetSig a where

type Elem a; type Set a

empty :: a -> Set a; member :: a -> Elem a -> Set a -> Bool

insert :: a -> Elem a -> Set a -> Set a

data IntSet = IntSet

instance SetSig IntSet where

type Elem IntSet = Int; type Set IntSet = [Int]

empty _ = []; member _ i s = any (intEq i) s

insert _ i s = if member IntSet i s then s else (i : s)

Figure 1. ML structure for integer sets and its translation to Haskell

MLstructure IntSet’ = IntSet :> sig type elem = int type set

val empty : set

val member : elem -> set -> bool

val insert : elem -> set -> set end

Haskelldata IntSet’ = IntSet’

instance SetSig IntSet’ where

type Elem IntSet’ = Elem IntSet; abstype Set IntSet’ = Set IntSet

empty _ = empty IntSet; member _ = member IntSet

insert _ = insert IntSet

Figure 2. Sealed ML structure for integer sets and its translation to Haskell

The data type IntSet corresponds to the name of the structure in ML. We
translate the structure itself by defining an instance of SetSig for IntSet. The
translation of the insert function shows that we encode access to the structure
component member by indexing the method member with a value of type IntSet.
We use the same technique to translate qualified access to structure compo-
nents. For example, the ML expression IntSet.insert 1 IntSet.empty is written
as insert IntSet 1 (empty IntSet) in Haskell.

2.2 Translating Abstract Types

The IntSet structure reveals to its clients that sets are implemented in terms of
lists. This is not always desirable; often, the type set should be kept abstract
outside of the structure. Our next example (Fig. 2) shows that we can achieve the
desired effect in ML by sealing the IntSet structure with a signature that leaves
the right-hand-side of set unspecified. Such signatures are called translucent,
in contrast to transparent (all type components specified) and opaque (all type
components unspecified) signatures.

Abstract types pose a problem to the translation because there is no obvious
counterpart for them in Haskell’s type class system. However, we can model
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them easily by slightly generalizing associated type synonyms to also support
abstract associated type synonyms. (We discuss other possibilities for representing
abstract types in Haskell in Sec. 2.5). The idea behind abstract associated type
synonyms is to limit the scope of the right-hand side of an associated type
synonym definition to the instance defining the synonym: Inside the instance,
the right–hand side is visible, but outside it is hidden; that is, the associated
type synonym is equated with some fresh type constructor.4 The first author’s
diploma thesis [13] includes a formalization of this extension.

The Haskell code in Fig. 2 demonstrates how our extension is used to model
abstract types in Haskell. The new keyword abstype introduces an abstract as-
sociated type synonym Set in the instance declaration for IntSet’. The effect
of using abstype is that the type equality Set IntSet’ = [Int] is visible from
within the instance declaration, but not from outside.

Note that there is no explicit Haskell translation for the signature of the
structure IntSet’. Instead, we reuse the type class SetSig from Fig. 1. Such a
reuse is possible because type abstraction in Haskell is performed inside instance
(and not class) declarations, which means that the signatures of the ML struc-
tures IntSet and IntSet’—differing only in whether the type component set is
abstract or not—would be translated into equivalent type classes.

2.3 Translating Functors

So far, we only considered sets of integers. ML allows the definition of generic
sets through functors, which act as functions from structures to structures. Fig. 3
shows such a functor. (We removed the elem type component from the functor
body to demonstrate a particular detail of the translation to Haskell.)

The Haskell version defines two type classes EqSig and MkSetSig as transla-
tions of the anonymous argument and result signatures, respectively. The class
MkSetSig is a multi-parameter type class [14], a well-known generalization of
Haskell 98’s single-parameter type classes. The first parameter b represents a
possible implementation of the functor body, whereas the second parameter a

corresponds to the functor argument; the constraint EqSig a allows us to access
the associated type synonym T of the EqSig class in the body of MkSetSig. (Now
it should become clear why we removed the elem type component from the func-
tor body: If E.t did not appear in a value specification of the functor body, the
necessity for the class parameter a would not occur.) Note that we cannot reuse
the names Set, empty, member, and insert of class SetSig because type synonyms
and class methods share a global namespace in Haskell.

The instance of MkSetSig for the fresh data type MkSet and some type variable
a is the translation of the functor body. The constraint EqSig a in the instance
context is necessary because we use the associated type synonym T and the
method eq in the instance body.
4 Interestingly, this idea goes back to ML’s abstype feature, which is nowadays es-

sentially deprecated; the Haskell interpreter Hugs [12] implements a similar feature.
In contrast to abstract associated type synonyms, these approaches require the pro-
grammer to specify the scope of the concrete identity of an abstract type explicitly.
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MLfunctor MkSet (E : sig type t val eq : t -> t -> bool end)

= struct type set = E.t list val empty = []

fun member x s = any (E.eq x) s

fun insert x s = if member x s then s else (x :: s) end

:> sig type set val empty : set val member : E.t -> set -> bool

val insert : E.t -> set -> set end

Haskellclass EqSig a where

type T a; eq :: a -> T a -> T a -> Bool

class EqSig a => MkSetSig b a where

type Set’ b a; empty’ :: b -> a -> Set’ b a

member’ :: b -> a -> T a -> Set’ b a -> Bool

insert’ :: b -> a -> T a -> Set’ b a -> Set’ b a

data MkSet = MkSet

instance EqSig a => MkSetSig MkSet a where

abstype Set’ MkSet a = [T a]; empty’ _ _ = []

member’ _ a x s = any (eq a x) s

insert’ _ a x s = if member’ MkSet a x s then s else (x : s)

Figure 3. ML functor for generic sets and its translation to Haskell

ML
structure StringSet = MkSet(struct type t = string val eq = stringEq end)

Haskelldata StringEq = StringEq

instance EqSig StringEq where

type T StringEq = String; eq _ = stringEq

Figure 4. Functor invocation in ML and its translation to Haskell

Fig. 4 shows how we use the MkSet functor to construct a set implementa-
tion for strings. To translate the functor invocation to Haskell, we define an
appropriate EqSig instance for type StringEq. The combination of the two types
MkSetSig and StringEq now correspond to the ML structure StringSet: access-
ing a component of StringSet is encoded in Haskell as an application (either on
the type or the term level) with arguments MkSet and StringEq. For example,
StringSet.empty translates to empty’ MkSet StringEq.

To demonstrate that our Haskell implementation for sets of strings fits the
general set framework, we provide an instance declaration for SetSig (Fig. 1):5

data StringSet = StringSet

instance SetSig StringSet where

type Elem StringSet = String

abstype Set StringSet = Set’ MkSet StringEq

empty _ = empty’ MkSet StringEq; member _ = member’ MkSet StringEq

insert _ = insert’ MkSet StringEq

5 The formal translation generates a class and an instance corresponding to the implicit
signature of the ML structure StringSet and the structure itself, respectively.
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ML Haskell
structure signature one-parameter type class
structure instance of the corresponding type class

functor argument signature single-parameter type class
functor result signature two-parameter type class (subclass of the argument class)
functor instance of the result class (argument class appears in

the instance context)

structure/functor name data type

type specification associated type synonym declaration
type definition associated type synonym definition
type occurrence associated type synonym application

value specification method signature
value definition method implementation
value occurrence method application

Table 1. Informal mapping from ML modules to Haskell type classes

2.4 Summary

Table 1 summarizes the (informal) translation from ML modules to Haskell type
classes developed so far. We use the notion “type occurrence” (“value occur-
rence”) to denote an occurrence of a type identifier (value identifier) of some
structure in a type expression (in an expression).

2.5 Design Decisions Motivated

While developing our translation from ML modules to Haskell type classes, we
have made (at least) two critical design decisions: associated type synonyms
represent type components of signatures and structures, and abstract associated
type synonyms encode abstract types. In this section, we discuss and evaluate
other options for translating these two features.

To encode abstract types, we see two alternative approaches. Firstly, we could
use Haskell’s module system. It enables abstract types by wrapping them in a
newtype constructor and placing them in a separate module that hides the con-
structor. This solution is unsatisfactory for two reasons: (i) Explicit conversion
code is necessary to turn a value of the concrete type into a value of the abstract
type and vice versa. (ii) We do not want Haskell’s module system to interfere
with our comparison of ML modules and Haskell type classes.

Secondly, we could use existentials [15,16] to encode abstract types. Fig. 5
shows the translation of the ML structure IntSet’ from Fig. 2 for this approach.
The type IntSetAbs hides the concrete identity of Set a by existentially quanti-
fying over a. The constraint Elem a ~ Int ensures that the types Elem a and Int

are equal [17]. In the following instance declaration, we use IntSetAbs to define
the Set type and implement the methods of the instance by delegating the calls
to the SetSig instance hidden inside IntSetAbs.
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Haskell
data IntSetAbs = forall a. (SetSig a, Elem a ~ Int) => IntSetAbs a (Set a)

data IntSet’’ = IntSet’’

instance SetSig IntSet’’ where

type Elem IntSet’’ = Int; type Set IntSet’’ = IntSetAbs

empty _ = IntSetAbs IntSet (empty IntSet)

member _ i (IntSetAbs a s) = member a i s

insert _ i (IntSetAbs a s) = IntSetAbs a (insert a i s)

Figure 5. Alternative encoding of abstract types with Haskell’s existential types

There is, however, a major problem with the second approach: It is un-
clear how to translate functions whose type signatures contain multiple oc-
currences of the same abstract type in argument position. For example, sup-
pose the signature of structure IntSet’ (Fig. 2) contained an additional function
union : set -> set -> set. The translation in Fig. 5 then also had to provide
a method union of type IntSetAbs -> IntSetAbs -> IntSetAbs. But there is no
sensible way to implement this method because the first and the second occur-
rence of IntSetAbs may hide different set representation types.6

An obvious alternative to associated type synonyms for representing ML’s
type components are multi-parameter type classes [14] together with functional
dependencies [18]. In this setting, every type component of an ML signature
would be encoded as an extra parameter of the corresponding Haskell type class,
such that the first parameter uniquely determined the extra parameters. Nev-
ertheless, there are good reasons for using associated type synonyms instead of
extra type class parameters: (i) The extra parameters are referred to by position;
however, ML type components (and associated type synonyms) are referred to
by name. (ii) Functional dependencies provide no direct support for abstract
types, whereas a simple and lightweight generalization of associated type syn-
onyms enables them. (Using existential types with functional dependencies has
the same problem as discussed in the preceding paragraph.) Moreover, associ-
ated type synonyms are becoming increasingly popular and are already available
in the development version of the most widely used Haskell compiler, GHC [11].

3 From Classes to Modules

The translation from Haskell type classes to ML modules encodes type classes as
signatures and instances of type classes as functors that yield structures of these
signatures. It makes use of two extensions to Standard ML, both of which are
implemented in Moscow ML [19]: recursive functors [20,21] model recursive in-
stance declarations, and first-class structures [22] serve as dictionaries providing
runtime evidence for type-class constraints. We first explain how to use first-
class structures as dictionaries (Sec. 3.1). Then we show ML encodings of type

6 The situation is similar for Java-style interfaces: two occurrences of the same interface
type may hide two different concrete class types.
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Haskellclass Eq a where eq :: a -> a -> Bool

class Eq a => Ord a where lt :: a -> a -> Bool

MLsignature Eq = sig type t val eq : t -> t -> bool end

signature Ord = sig type t val lt : t -> t -> bool

val superEq : [Eq where type t = t] end

Figure 6. Haskell type classes Eq and Ord and their translations to ML

class declarations (Sec. 3.2), of overloaded functions (Sec. 3.3), and of instance
declarations (Sec. 3.4). Finally, we summarize our results (Sec. 3.5).7

3.1 First-class Structures as Dictionaries

Dictionary translation [2,23,24,25] is a technique frequently used to eliminate
overloading introduced by type classes. Using this technique, type-class con-
straints are turned into extra parameters, so that evidence for these constraints
can be passed explicitly at runtime. Evidence for a constraint comes as a dictio-
nary that provides access to all methods of the constraint’s type class.

The translation from Haskell type classes to ML modules is another ap-
plication of dictionary translation. In our case, dictionaries are represented as
first-class structures [22], an extension to Standard ML that allows structures
to be manipulated on the term level. This article uses first-class structure as
implemented in Moscow ML [19].

We need to explicitly convert a structure into a first-class structure and vice
versa. Suppose S is a signature, and s is a structure of signature S. Then the
construct [structure s as S] turns s into a first-class structure of type [S]. Such
types are called package types. Conversely, the construct let structure X as S =

e1 in e2 end, where the expression e1 is expected to have type [S], makes the
structure contained in e1 available in e2 under the name X.

Clearly, there are alternative representations for dictionaries in ML; for ex-
ample, we could use records with polymorphic fields, as featured by OCaml [26].
We are, however, interested in a comparison between Haskell-style type classes
and ML’s module system, so we do not pursue this approach any further.

3.2 Translating Type Class Declarations

Fig. 6 shows two Haskell type classes Eq and Ord, which provide overloaded func-
tions eq and lt. We translate these classes into ML signatures of the same name.
Thereby, the type variable a in the class head is mapped to an opaque type spec-
ification t, and the methods of the class are translated into value specifications.
The signature Ord has an additional value specification superEq to account for
the superclass Eq of Ord. Consequently, superEq has type [Eq where type t = t]

which represents a dictionary for Eq at type t.

7 We use Haskell 98 [10] in this section; the ML code runs under Moscow ML [19].
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Haskellelem :: Eq a => a -> [a] -> Bool

elem x l = any (eq x) l

MLfun elem d (x:’a) l = let structure D as Eq where type t = ’a = d

in any (D.eq x) l end

Figure 7. Overloaded function in Haskell and its translation to ML

3.3 Translating Overloaded Functions

Fig. 7 shows the Haskell function elem, which uses the eq method of class Eq.
Hence, the constraint Eq a needs to be added to the (optional) type annotation
of elem to limit the types that can be substituted for a to instances of Eq.

As already noted in Sec. 3.1, such a constraint is represented in the ML ver-
sion of elem as an additional parameter d which abstracts explicitly over the dic-
tionary for the constraint Eq a. Hence, the type of elem in ML is [Eq where type

t = ’a] -> ’a -> ’a list -> bool.

In the body of elem, we open the first-class structure d and bind the content to
the structure variable D, so that we can access the equality comparison function as
D.eq. Note that we cannot do without the type annotation (x:’a): It introduces
the lexically scoped type variable ’a used in the signature required for opening
d. (Lexically scoped type variables are part of Standard ML.)

3.4 Translating Instance Declarations

Finally, we turn to the translation of instance declarations. The Haskell code in
Fig. 8 makes the type Int an instance of the type classes Eq and Ord. Furthermore,
it specifies that lists can be compared for equality as long as the list elements
can be compared for equality. This requirement is expressed by the constraint
Eq a in the context of the instance declaration for Eq [a]. (The constraints to
the left of the double arrow => are called the context ; the part to the right is
called the head. The double arrow is omitted if the context is empty.)

The functors EqInt and OrdInt are translations of the instances Eq Int and
Ord Int, respectively. These two functors do not take any arguments because the
contexts of the corresponding instance declarations are empty. (We could use
structures instead of functors in such cases; however, for reasons of consistency
we decided to use functors even if the instance context is empty.) The definition
of the superEq component in OrdInt demonstrates that dictionaries are created
by coercing structures into first-class structures.

The translation of the instance declaration for Eq [a] is more interesting
because the Haskell version is recursive (through the expression eq xs ys in the
second equation of eq) and has a non-empty context. Consequently, the functor
EqList for this instance has to be defined recursively and takes an argument of
signature Eq corresponding to the constraint Eq a in the instance context.

To encode recursive functors, we use Moscow ML’s recursive structures [20,21].
We first define an auxiliary structure R that contains a definition of the desired
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Haskellinstance Eq Int where eq = intEq

instance Ord Int where lt = intLt

instance Eq a => Eq [a] where eq [] [] = True

eq (x:xs) (y:ys) = eq x y && eq xs ys

eq _ _ = False

MLfunctor EqInt() = struct type t = int val eq = intEq end

functor OrdInt() = struct type t = int val lt = intLt

val superEq = [structure EqInt()

as Eq where type t = t] end

structure R = rec

(R’ : sig functor F : functor (X: Eq) -> Eq where type t = X.t list end)

struct functor F(X: Eq) =

struct type t = X.t list

fun eq [] [] = true

| eq (x::xs) (y::ys) =

let structure Y as Eq where type t = t

= [structure R’.F(X) as Eq where type t = t ]

in X.eq x y andalso Y.eq xs ys end

| eq _ _ = false

end

end

functor EqList(X: Eq) = R.F(X)

Figure 8. Instance declarations in Haskell and their translations to ML

functor F. The keyword rec together with the forward declaration (R’ : ...)

makes the content of R available inside its own body. In the definition of eq, we
use R’.F to invoke the functor recursively, pack the result as a first-class struc-
ture, immediately open this structure again, and bind the result to the variable
Y. Now we can use Y.eq to compare xs and ys. The combination of pack and
open operations is necessary to interleave computations on the term level with
computations on the module level; it is not possible to invoke R’.F(X).eq directly.
After the definition of R, we define EqList by invoking R.F.

It may seem awkward to use recursive functors in ML to encode recursive
Haskell functions. Indeed, for the example just discussed, a recursive ML func-
tion would be sufficient. In general, however, it is possible to write polymorphic
recursive functions [27] with Haskell type classes. For such cases, we definitely
need to encode recursion in terms of recursive functors because polymorphic
recursion is not available on the term level of Standard ML.8

3.5 Summary

We summarize the (informal) translation from Haskell type classes to ML mod-
ules in Table 2. Note that dictionaries are not part of Haskell’s surface syntax;
8 Extending Standard ML’s term language with polymorphic recursion is an alterna-

tive option. For Haskell type classes, polymorphic recursion comes “for free” because
class declarations provide explicit type information.
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Haskell ML
type class declaration signature
class method value component
superclass superclass dictionary

dictionary first-class structure

(recursive) instance declaration (recursive) functor
constraint in instance context argument to the corresponding instance functor
overloaded function function with additional dictionary parameter(s)

Table 2. Informal mapping from Haskell type classes to ML modules

they only become manifest when evidence for constraints is made explicit by our
translation technique.

4 Formalization and Implementation

So far, all we did was apply the translations between ML modules and Haskell
type classes to some examples. How do we know that the translations work
in general and not only for our examples? To answer this question, we have
formalized the two translations, proved that they preserve types, and provided
implementations for them. For space reasons, we only describe the source and
target languages of the formalized translations. All the other details, all proofs,
and the implementations are part of the first author’s diploma thesis [13].

The source language of the formalized translation from modules to classes is
a subset of Standard ML [9], featuring all important module language constructs
except nested structures. The target language of the translation is Haskell 98 [10]
extended with multi-parameter type classes [14], associated type synonyms [6],
and abstract associated type synonyms (a contribution of the work at hand).

The translation from classes to modules uses a source language that sup-
ports type classes in the style of Haskell 98, but without constructor classes,
class methods with constraints, and default definitions for methods. The target
language of this translation is a subset of Standard ML extended with first-class
structures [22] and recursive functors [20,21].

5 Discussion

Having developed translations from ML modules to Haskell type classes and vice
versa, we now present a thorough comparison between the two concepts. Sec. 5.1
discusses how Haskell type classes perform as a replacement for ML modules.
Sec. 5.2 changes the standpoint and evaluates how ML modules behave as an
alternative to Haskell type classes.

5.1 Classes as Modules

Namespace management. ML modules provide proper namespace management,
whereas Haskell type classes do not: It is not possible that two different type
classes (in the same Haskell module) declare members of the same name.
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Signature and structure components. Signatures and structures in ML may con-
tain all sorts of language constructs, including substructures. Type classes and
instances in Haskell 98 may contain only methods; extensions to Haskell 98 also
allow type synonyms [6] and data types [5]. However, there exists no extension
that allows nested type classes and instances.

Sequential vs. recursive definitions. Definitions in ML are type checked and eval-
uated sequentially, with special support for recursive data types and recursive
functions. In particular, cyclic type abbreviations are disallowed. In Haskell, all
top-level definitions are mutually recursive, so associated type synonyms must
impose extra conditions to prevent the type checker from diverging while expand-
ing their definitions. For our purpose, the original termination conditions [6] are
too restrictive. Nevertheless, no program in the image of our translation from
modules to type classes causes the type checker to diverge because the sequential
nature of type abbreviations carries over to associated type synonym definitions.

Implicit vs. explicit signatures. In ML, signatures of structures are inferred im-
plicitly. In Haskell, the type class to which an instance declaration belongs has
to be stated explicitly. However, once recursive modules are introduced, ML
also requires explicit signatures, so the difference between implicit and explicit
signatures interplays with the preceding point of our comparison.

Anonymous vs. named signatures. Signatures in ML are essentially anonymous
because named signatures can be removed from the language without losing
expressiveness. Haskell type classes cannot be anonymous.

Structural vs. nominal signature matching. The difference between anonymous
and named signatures becomes relevant when we compare signature matching
in ML with its Haskell counterpart. In ML, matching a structure against a
signature is performed by comparing the structure and the signature component-
wise; the names of the structure and the signature—if present at all—do not
matter. This sort of signature matching is often called structural matching. Our
Haskell analog of signature matching is verifying whether the type representing a
structure is an instance of the type class representing the signature. The name of
a class is crucial for this decision. Therefore, we characterize our Haskell analog
of signature matching as nominal.

Abstraction. In ML, abstraction is performed by sealing a structure with a trans-
lucent or opaque signature. In Haskell, we perform abstraction inside instance
declarations through abstract associated type synonyms.

Unsealed and sealed view. A sealed structure in ML may look different depend-
ing on whether we view its body from inside or outside the signature seal: Inside,
more values and types may be visible, some types may be concrete, and some
values may have a more polymorphic type than outside. For our Haskell ana-
log, the same set of types and values is visible and a value has the same type,
regardless of whether we view the instance from inside or outside.
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Translucent vs. opaque signatures Translucent signatures (signatures with both
concrete and abstract type components) are a key feature of ML’s module sys-
tem. Signatures in Haskell (i.e., type classes) may be classified as opaque because
they do not provide definitions for type components (i.e., associated type syn-
onyms).9

First-class structures. First-class structures are a nontrivial extension to Stan-
dard ML [22]. In our representation of structures as data types and instance
declarations, we get first-class structures for free, provided we only use top-level
structures as first-class entities. This restriction is necessary because instance
declarations in Haskell have to be top-level. All examples given by Russo [22,21]
meet this restriction.

5.2 Modules as Classes

Implicit vs. explicit overloading resolution. Overloading in Haskell is resolved
implicitly by the compiler. When type classes are simulated with ML modules,
overloading has to be resolved explicitly by the programmer, which leads to
awkward and verbose code.

Constructor classes. Our current translation scheme is unable to handle con-
structor classes because there is not direct counterpart of Haskell’s higher-oder
types in ML. We consider it as interesting future work to investigate whether
an encoding of higher-order types as functors would enable a translation of con-
structor classes to ML modules.

Recursive classes. Type classes in Haskell may be recursive in the sense that
a class can be used in a constraint for a method of the same class. We cannot
translate such recursive classes to ML because signatures cannot be recursive.

Default definitions for methods. Haskell type classes may contain default def-
initions for methods. With our approach, such default definitions cannot be
translated properly to ML because signatures specify only the types of value
components and cannot contain implementations of value components.

Associated type synonyms. Type components in ML are similar to associated
type synonyms in Haskell, but it is unclear whether they have the same ex-
pressivity as their Haskell counterpart. For example, consider Chakravarty and
colleagues’ use of associated type synonyms to implement a string formatting
function. Their function sprintf has type Format fmt => fmt -> Sprintf fmt,
where Format is a type class with an associated type synonym Sprintf. Given
the translation presented in this article, we would use a first-class structure
to encode the constraint Format fmt in ML. The translation of the result type
Sprintf fmt would then require access to the type component of this structure
that corresponds to the associated type synonym Sprintf. It is not clear how
this can be realized.
9 Default definitions for associated type synonyms do not help here because they may

change in instance declarations.
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6 Related Work

There is only little work on connecting modules with type classes. None of these
works meet our goal of comparing ML modules with Haskell type classes based
on formal translations.

The work closest to ours is Dreyer and colleagues’ modular reconstruction
of type classes [8]. This work, which strictly speaking came after our own [13],
extends Harper & Stone’s type-theoretic interpretation of modules [28] to include
ad-hoc polymorphism in the style of Haskell type classes. Instead of adding
an explicit notion of type classes to ML, certain forms of module signatures
take the role of class declarations and matching modules may be nominated as
being canonical for the purpose of overload resolution. The presented elaboration
relation mirrors Haskell’s notion of an evidence translation and is related to our
translation of Haskell classes into ML modules. Dreyer and colleagues do not
consider the converse direction of modeling modules by type classes.

Kahl and Scheffczyk [4] propose named instances for Haskell type classes.
Named instances allow the definition of more than one instance for the same
type; the instances are then distinguished by their name. Such named instances
are not used automatically in resolving overloading; however, the programmer
can customize overloading resolution by supplying them explicitly. Kahl and
Scheffczyk motivate and explain their extension in terms of OCaml’s module
system [29,26]; they do not consider any kind of translation from ML modules
to Haskell type classes or vice versa.

Shan [30] presents a formal translation from a sophisticated ML module
calculus [31] into System Fω [32]. The source ML module calculus is a unified
formalism that covers a large part of the design space of ML modules. The target
language System Fω of Shan’s translation can be encoded in Haskell extended
with higher-rank types [33]; however, this encoding is orthogonal to the type class
system. Kiselyov builds on Shan’s work and translates a particular applicative
functor into Haskell with type classes [34]. However, he does not give a formal
translation, so it is unclear whether his approach works in general. Neither Shan
nor Kiselyov consider translations from type classes to modules.

Schneider [3] adds Haskell-style type classes to ML. His solution is conserva-
tive in the sense that type classes and modules remain two separate concepts.
In particular, he does not encode type classes as modules. Translations in the
opposite direction are not addressed in his work.

Jones [35] suggests record types with polymorphic fields for modular pro-
gramming. These record types do not support type components but explicit
type parameterization. Jones then uses parametric polymorphism to express
ML’s sharing constraints and to abstract over concrete implementation types.
His system supports first-class structures and higher-order modules.

Nicklisch and Peyton Jones [36] compare ML’s with Haskell’s module sys-
tem. They report that the simple namespace mechanism offered by Haskell can
compete with the module system offered by ML in many real–world applica-
tions. Moreover, they integrate Jones approach [35] into Haskell to find that the
resulting system exceeds ML’s module system in some cases.
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7 Conclusion

This article demonstrates how to translate essential features of ML modules to
Haskell type classes and vice versa. Both translations come with a formalization,
a proof of type preservation, and an implementation. Based on the two trans-
lations, the article presents a thorough comparison between ML modules and
Haskell type classes.
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