Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Failed to load latest commit information.


A memoizing pure lambda calculus interpreter in Go with only two builtins:

  • PRINT_BYTE - takes a Church-encoded numeral and writes the corresponding byte to the configured output stream.
  • READ_BYTE - returns a Church-encoded pair value, where the first element is a Church-encoded boolean about whether or not any data was read, and the second element is a Church-encoded numeral representing the byte that was read if successful, and 0 otherwise. The only reason no data was read was if EOF was reached. Other errors stop execution.

When run in output mode, PRINT_BYTE goes to stdout. READ_BYTE comes from stdin. If you use the sheepda library from your own Go program instead, you can configure input and output to be any io.Writer or io.Reader, in addition to defining your own builtins.



cd $(mktemp -d)
GOPATH=$(pwd) go get
bin/sheepda output src/{prelude,hello-world}.shp
Usage: bin/sheepda [-a] <parsed|output|result> <file1.shp> [<file2.shp> ...]
  -a	if provided, skip assignments when pretty-printing in parsed mode


Check out interview-probs for how some abstraction towers can be built up for solving common whiteboard problems in pure lambda calculus.

Here is Fizzbuzz in pure lambda calculus with only PRINT_BYTE added. Much of the definition is building up supporting structures like lists and numbers and logic.

((λfizzbuzz.(fizzbuzz (((num 1) 0) 0))) λn.((for n) λi.((do2 (((if (zero?
((% i) 3))) λ_.(((if (zero? ((% i) 5))) λ_.(print-list fizzbuzzmsg)) λ_.
(print-list fizzmsg))) λ_.(((if (zero? ((% i) 5))) λ_.(print-list buzzmsg))
λ_.(print-list (itoa i))))) (print-newline nil))))) ((cons (((num 0) 7) 0))
((cons (((num 1) 0) 5)) ((cons (((num 1) 2) 2)) ((cons (((num 1) 2) 2)) ((cons
(((num 0) 9) 8)) ((cons (((num 1) 1) 7)) ((cons (((num 1) 2) 2)) ((cons (((num
1) 2) 2)) nil)))))))))) ((cons (((num 0) 6) 6)) ((cons (((num 1) 1) 7)) ((cons
(((num 1) 2) 2)) ((cons (((num 1) 2) 2)) nil)))))) ((cons (((num 0) 7) 0))
((cons (((num 1) 0) 5)) ((cons (((num 1) 2) 2)) ((cons (((num 1) 2) 2))
nil)))))) λn.(((Y λrecurse.λn.λresult.(((if (zero? n)) λ_.(((if (nil? result))
λ_.((cons zero-byte) nil)) λ_.result)) λ_.((recurse ((/ n) 10)) ((cons
((+ zero-byte) ((% n) 10))) result)))) n) nil))) (((num 0) 4) 8))) λ_.
(print-byte (((num 0) 1) 0)))) (Y λrecurse.λl.(((if (nil? l)) λ_.void) λ_.
((do2 (print-byte (car l))) (recurse (cdr l))))))) PRINT_BYTE)) λn.λf.((((Y
λrecurse.λremaining.λcurrent.λf.(((if (zero? remaining)) λ_.void) λ_.((do2 (f
current)) (((recurse (pred remaining)) (succ current)) f)))) n) 0) f))) λa.λb.
b)) λl.(pair-second (pair-second l)))) λl.(pair-first (pair-second l)))) λe.λl.
((make-pair true) ((make-pair e) l)))) λl.(not (pair-first l)))) ((make-pair
false) void))) λm.λn.((- m) ((* ((/ m) n)) n)))) (Y λ/.λm.λn.(((if ((eq? m) n))
λ_.1) λ_.(((if (zero? ((- m) n))) λ_.0) λ_.((+ 1) ((/ ((- m) n)) n))))))) λm.
λn.((and (zero? ((- m) n))) (zero? ((- n) m))))) λm.λn.((n pred) m))) λn.
((((λn.λf.λx.(pair-second ((n λp.((make-pair (f (pair-first p))) (pair-first
p))) ((make-pair x) x)))) n) succ) 0))) λn.((n λ_.false) true))) λp.(p false)))
λp.(p true))) λx.λy.λt.((t x) y))) λa.λb.((a b) false))) λp.λt.λf.((p f) t)))
λp.λa.λb.(((p a) b) void))) λt.λf.f)) λt.λf.t)) λa.λb.λc.((+ ((+ ((* ((* 10)
10)) a)) ((* 10) b))) c))) (succ 9))) (succ 8))) (succ 7))) (succ 6))) (succ
5))) (succ 4))) (succ 3))) (succ 2))) (succ 1))) (succ 0))) λm.λn.λx.(m (n
x)))) λm.λn.λf.λx.((((m succ) n) f) x))) λn.λf.λx.(f ((n f) x)))) λf.λx.x))
λx.(U U))) (U λh.λf.(f λx.(((h h) f) x))))) λf.(f f))

Formatted and without dependent subproblems:

fizzbuzz = λn.
  (for n λi.
      (if (zero? (% i 3))
          λ_. (if (zero? (% i 5))
                  λ_. (print-list fizzbuzzmsg)
                  λ_. (print-list fizzmsg))
          λ_. (if (zero? (% i 5))
                  λ_. (print-list buzzmsg)
                  λ_. (print-list (itoa i))))
      (print-newline nil)))


<expr> ::= <variable>
         | `λ` <variable> `.` <expr>
         | `(` <expr> <expr> `)`

Note that the backslash character \ can be used instead of the lambda character λ.

Parser-level syntax sugar

Two forms of syntax sugar are understood by the parser.


Every valid lambda calculus program consists of exactly one expression, but this doesn't lend itself to easy construction. So, before the main expression, if

<variable> `=` <expr>

is encountered, it is turned into a function call application to define the variable, like so:

`(` `λ` <variable> `.` <rest> <expr> `)`


true = λx.λy.x

(true a b)

is turned into

(λtrue.(true a b) λx.λy.x)

Every valid program is therefore a list of zero or more assignments followed by a single expression.


If more than one argument is encountered, it is assumed to be curried. For example, instead of chaining arguments like this:

((((f a1) a2) a3) a4)

you can instead use the form:

(f a1 a2 a3 a4)


Copyright (C) 2017 JT Olds. See LICENSE for copying information.