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Abstract

The ever-growing amount of publications of biomedical journals makes it impossible for an
individual to conceive useful information and obtain knowledge. The nascent technology
of text mining facilitates the automation of information which results into networks and
conversion of information into knowledge. These networks are essential to represent relations
between genes, phenotypes, diseases and other entities of interest from the unstructured form
of publications. The researcher community usually focuses only on the domain of interest and
ignores publications of other domains that might be equally relevant. The research presented
here involves an attempt to discover new relations among entities in a massive-scale network
and thus provides with new leads on research topics.

This thesis highlights the prospects of utilizing MapReduce in biological networks, in general
and a modest search engine for possible new relationships among existing biomedical entities,
in particular. The goal of this work is to Vlter the synonymous entities in the network with
the help of a novel local clustering algorithm implemented by MapReduce. MapReduce is a
framework to process large amounts of data in parallel and due to the evergrowing massiveness
of biological networks we see it justly eligible to utilize MapReduce to such networks. The
database of EXCERBT, a text mining tool, was chosen as the standard platform for the research
because of its huge number of entities and relations. The whole project was divided into
two main categories. First of all, the network was thoroughly analysed on its basic network
properties like degree distribution, clustering coeXcient and scale-freeness. A few unexpected
yet easily dispatchable anomalies were found in the process. Secondly an egocentric local
clustering was performed on the whole network. The algorithm designed for this purpose
was then applied to cluster synonymous biomedical terms to resolve the intricacy in the
network. The main aspect of the analysis and the clustering was to convert the available
algorithms in MapReduce algorithms. Apache Hadoop which is a popular free implementation
for MapReduce was applied with that end in view. In order to visualize a realistic example of
our local clustering algorithm a subnetwork of Parkinson’s disease was extracted out of the
EXCERBT network. Only genes as entity type were selected for this purpose. This subnetwork
was later employed to focus on the biomedical synonym problem related with Parkinson’s
diesease and eventually towards a proposition for the resolution.
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Zusammenfassung

Die stets wachsende Anzahl von biomedizinischen Publikationen macht es unmöglich für
einzelne Personen wichtige Informationen zu begreifen und Wissen zu erlangen. Die Text
Mining Technologie ermöglicht die Automatisierung der Informationen, was zu Netzwerken
führt. Dies führt wiederum zur Umsetzung von Informationen zu Wissen. Solche biomedizinis-
chen Netzwerke sind essentiell um Relationen zwischen Genen, Phenotypen, Erkrankungen
und andere Datensätze darzustellen. Normalerweise konzentrieren sich die Forscher und Wis-
senschaftler nur auf das Thema ihrer Interesse und ignorieren Publikationen anderer Bereiche,
die aber auch relevant sein könnten. Die vorliegende Forschungsarbeit hat die Absicht, bisher
unbekannte Relationen zwischen Objekten in einem umfangreichen Netzwerk zu Vnden und
dadurch den Forschern neue Hinweise für weitere Forschungen zur Verfügung zu stellen.

Diese Arbeit beleuchtet dabei zunächst im Allgemeinen die Perspektive für die Nutzung
von MapReduce in biologischen Netzwerken. Zum anderen wird die konkrete Umsetzung einer
einfachen Suchmaschine für potentielle neue Beziehungen zwischen existierenden biomedi-
zinischen Entitäten betrachtet. Das Ziel der Arbeit ist, mithilfe eines neuartigen Algorithmus
synonyme Objekte aus einem bestehenden Netzwerk herauszuVltern. Die Implementierung des
Algorithmus erfolgte hierbei mit MapReduce, einem Framework für die nebenläuVge Berech-
nung großer Datenmengen, das aufgrund der wachsenden Größe biologischer Netzwerke
als geeignet erschien. Die Untersuchung stützte sich auf die Datenbank des Text-Mining-
Programms EXCERBT, das über eine genügend große Anzahl an Objekten und Relationen
verfügt. Das Gesamtprojekt wurde in zwei Hauptkategorien unterteilt. Zunächst wurde das
Netzwerk hinsichtlich der grundlegenden Eigenschaften wie Gradverteilung, ClusterkoeXzient
und Skaleninvarianz analysiert. Im Rahmen dessen wurden vereinzelt unerwartete Anoma-
lien entdeckt, die jedoch leicht zu beheben waren. Im nächsten Schritt wurde ein lokales
egozentrisches Clustering für das gesamte Netzwerk durchgeführt. Um die Komplexität des
Netzwerks zu verringern, wurde der für diesen Zweck entworfene Algorithmus anschließend
nochmals für ein erneutes Clustering der synonymen biomedizinischen Ausdrücke angewandt.
Der Hauptaspekt der Analyse und des Clustering war die Umwandlung von bereits beste-
henden Algorithmen in MapReduce-Algorithmen. Für die Umsetzung stand Apache Hadoop
als kostenlose Implementierung von MapReduce zur Verfügung. Als realistisches Beispiel
wurde für die Visualisierung der Ergebnisse ein Teilnetzwerk der Parkinson-Krankheit aus
dem EXCERBT-Netzwerk extrahiert, wobei lediglich solche Objekte berücksichtigt wurden, die
Gen als Objekttyp aufwiesen. Das entstehende Teilnetzwerk wurde schließlich dazu eingesetzt,
um die Problematik der biomedizinischen Synonyme in Bezug auf Parkinson hervorzuheben
und einen Lösungsvorschlag zu liefern.
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1 Introduction

On February 28, 1953, Francis Crick walked into the Eagle pub in Cambridge, England, and
as James Watson later recalled, announced "We have found the secret of life"1. They indeed
had. Not only that but the two codiscoverers of DNA structure had also laid the cornerstone of
a new domain of natural science. Since that day on, biology which is concerned with living
organisms, their structure, functions and activities was destined to become an information
science. During the last sixty years the concept of information has acquired an outstanding
role in biology. Bioinformaticians understand biology in terms of expression of information,
execution of programs and interpretation of codes. Algorithms are evolving rapidly, large and
heterogenous data are being handled and the capacity seems to know no bounds.

Alone the information of genomic sequence data has increased in such a short time that
the notion of data explosion has almost become a cliché. NCBI’s Entrez Genome Project site
had already cataloged 3,327 genome sequences including prokaryotes and eukaryotes both
while the Vrst one (C. elegans) was completed not until 19952. Along with the increasing
amount of DNA sequencing data there has been a formidable increase in the quantity of data
describing how this information is used to implement the functions of the organism. These
data are summarized in ever-growing volume of biomedical articles published in diUerent
journals. PubMed has a collection of more than 22 million citations3. This number is probably
hard to comprehend but in 2011 1.4 papers per minute were added to this database on an
average and this is an easier number to understand4.

Yet all this information is not knowledge. One has to perceive, store and retrieve the in-
formation with a view to gain knowledge. But without an appropriate tool it is simply
impossible for an individual to convert information into knowledge. The nascent technology
of text mining promises to automate the information gathering stage by using computers to
sift through and scour published articles [1]. The process of text mining can be presented as a
pipeline consisting of four phases. It namely comprises the text resources, analyzes the data,
then interprets them which Vnally leads to knowledge (Fig. 1.1). There are three basic types of
approaches to text mining in the biomedical domain [2]:

1. Cooccurrence based system: This method searches for concepts that occur in the same
unit of text, typically a sentence, but sometimes as large as an abstract. Then it posits
a relationship between them. For example if BRCA1 and breast cancer occurred in the
same sentence it might assume a relationship between breast cancer and the BRCA1
gene.

1http://news.bbc.co.uk/2/hi/science/nature/2804545.stm, September 26, 2012
2http://www.ncbi.nlm.nih.gov/genomes/static/gpstat.html, September 26, 2012
3http://www.ncbi.nlm.nih.gov/sites/entrez?db=pubmed&cmd=search&term=1800:2100[dp],
September 26, 2012

4http://www.nlm.nih.gov/bsd/medline_cit_counts_yr_pub.html, September 26, 2012
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1 Introduction

Figure 1.1: The four main steps of text mining. Taken from [3].

2. Rule based system: This method works by utilizing general and speciVc knowledge,
particularly the knowledge about language structure and biologically relevant facts stated
in the biomedical literature. A simple rule based system might use hardcoded patterns
to Vnd explicit statements, for example, 〈gene〉 plays a role in 〈disease〉 or 〈disease〉 is
associated with 〈gene〉. A rule based system might also use sophisticated linguistic and
semantic analyses to recognize a wide range of possible ways of making assertions about
those classes of things.

3. Machine learning based system: This method operates by building classiVers that may
operate on any level, from labelling part of speech to choosing syntactic parse trees to
classifying full sentences or documents.

In a nutshell text mining establishes one or more relations among the data within a certain
domain. The knowledge thus gained through text mining also needs to be stored and repre-
sented in such a way that a simple query can lead to the source of the information. A graph is
a wide spread prevalent representation of complex relations. The vertices are the entities of
interest and the edges the relations between entities. Depending on the texture and the context
one can also assign direction and type of relations. This introduces to the possibility of creat-
ing a network which can facilitate the modelling of complex dependencies between the entities.

After a certain magnitude of entities and relations even a well planned network can be
invaded by disorder and confusion. In order to prevent this situation a network has to be
studied, analyzed and clustered if possible. Again here information of multiple theories can
be employed from diUerent disciplines like mathematics, computer science or even social
sciences. The structure and size of a biomedical network takes well after the global online
social networks. It is not only innovative but also inspiring to explore the possibilities of
integrating theories from social network analysis into biological networks. In the end it is all
about giving the network a comprehensive shape. One might not be able to pigeon-hole the
information and knowledge minutely but can deVnitely count on a sophisticated sorting of the
previously prevailing chaos.

Motivation behind the concept

The correlation of complex interactions that lead to a speciVc phenotype can be apprehended
easily with the help of such biomedical networks. The information is already there and so
is knowledge. It provides an individual with the idea of what has already been done and

2 Syeda Tanzeem H.Charu, 2012



Figure 1.2: A schematic representation of the framework of this thesis. The red dashed rectangle covers the
area of the work.

what is yet to be done. One can also study the predicted eUects without time consuming
and expensive experiments. This thesis enfolds the analysis and clustering of a massive-scale
network which was originated by EXCERBT, a text mining tool for biomedical literature. A
pattern of our work is sketched in Fig. 1.2. We systematically examine this network and
determine its basic properties like degree distribution and clustering coeXcients in chapter 3.
The main challenge is to run the analysis on this massive-scale network which is beyond the
capacity of a single machine. Hence we adjust the conventional algorithm for computation in
MapReduce framework (details on MapReduce in chapter 2).

After understanding the network’s structure we proceed further for a local clustering in
order to utilize the knowledge it provides to the maximum. Here we apply the concept of an
egocentric network which has its origins in anthropology. We developed an alogorithm that
we implement in MapReduce framework as well. We intend to detect possible new relation-
ships among existing biomedical entities, particularly between genes related to the phenotype
Parkinson’s disease. It should be mentioned here that the notion of gene, phenotype and the
like in this work refers to automated terms in the network. Details follow in chapter 4.

The reason of choosing Parkinson’s disease for our work is simply because there is still
no cure available for it and there are around 7 to 10 million people living with Parkinson’s
disease in the world5. Parkinson’s disease is a slowly progressive disorder that aUects move-
ment, muscle control and balance. Part of the disease process develops as cells are destroyed
in certain parts of the brain stem, particularly the crescent shaped cell mass known as the

5Statistics from the Parkinson’s disease foundation, http://www.pdf.org/en/parkinson_statistics,
September 26, 2012
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1 Introduction

Figure 1.3: Substantia nigra and Parkinson’s disease. Figure taken from PubMed Health and copyrighted by
A.D.A.M.

substantia nigra (Fig. 1.3). Nerve cells in the substantia nigra send out Vbers to tissue located in
both sides of the brain. These cells release dopamine, an essential neurotransmitter, that helps
control movement and coordination. It is one of the most common nervous system disorders
of the elderly. Parkinson’s disease most often develops after age 50 which is deVned as non
familial Parkinson’s disease6. In such cases it is not subject to natural selection because it does
not aUect a patient’s Vtness. In case of familial Parkinson’s disease it is possible for patients
to develop the disease at a much younger age and pass the defective Parkin gene (mutated
PINK1) to their children. This early onset Parkinson’s can have an eUect on the Vtness of the
patient and can be subject to natural selection [4][5].

The egocentric local clustering algorithm that we developed in this research relates the genes
in pairs according to a speciVc tie strength (see chapter 4). It suggests gene pairs with strong
and weak ties depending on what the researcher is looking for. Besides gene or phenotype this
algorithm applies for any type of entity such as protein, metabolite, tissue, species etc.

Additionally we propose a potential usage of the egocentric local clustering algorithm for
detecting automated synonymous terms in chapter 5. Also here we experiment on genes related
to Parkinson’s disease. In this context, a clustering of automated biomedical synonyms should
facilitate a better understanding of the correlation of genes with a view to avoid confusion
and complexity in the network. This attempt is rather a prospective enrichment to the already
gained knowledge than accumulation of further information. Synonym extraction remains
solely within the department of text mining where information is still in the process of being
converted into knowledge.

6Abstracted from http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0001762/, September 26, 2012
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2 Materials

2.1 Dataset

There are three datasets that were used in this thesis, namely:

1. EXCERBT

2. Parkinson’s disease gene network

3. Protein-protein interation network of S. cerevisiae, commonly known as yeast.

The Vrst two were taken for network analysis, local clustering and biomedical synonym
resolution by our proposed MapReduce algorithms and the latter, being a familiar network, to
validate the algorithms.

2.1.1 EXCERBT

EXCERBT1, short for "Extraction of ClassiVed Entities and Relations from Biomedical Text", is a
text mining resource oUered by the Institute of Bioinformatics and Systems Biology (formerly
Munich Information Center for Protein Sequences, MIPS) in the Helmholtz Zentrum Munich
(IBIS at the Helmholtz Center for Environmental Health, Neuherberg, Germany) [6]. It was
developed with a view to reduce the increasing amount of time spent on literature search in
the life sciences. It is based on cooccurrence and Semantic Role Labeling (SRL). Semantic role
labeling, sometimes also called shallow semantic parsing, is an application in natural language
processing (NLP) that identiVes the semantic arguments associated with the predicate or verb
of a sentence and their classiVcation into their speciVc roles.

For example:

"BRCA1 encodes a 1,863 amino acid protein with no ascribed function."2

Here the task would be mainly to recognize the verb "to encode" representing the relation, the
subject "BRCA1" representing the source, the predicate "amino acid" representing the target.
This is an important step towards making sense of the meaning of a sentence. A semantic
representation of this sort is at a higher level of abstraction than a syntax tree. The passive
form of the sentence above is:

"A 1,863 amino acid protein with no ascribed function is encoded by BRCA1."

It has a diUerent syntactic form, but the same semantic roles. Text mining approaches based
on cooccurrence alone can handle large databases like PubMed3 in a modest time but they

1http://mips.helmholtz-muenchen.de/excerbt, September 26, 2012
2http://www.ncbi.nlm.nih.gov/pubmed/15687549, September 26, 2012
3http://www.ncbi.nlm.nih.gov/pubmed, September 26, 2012
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2 Materials

cannot extract any speciVc type of semantic relation. The current implementation of EXCERBT
involves the use of SENNA (“Semantic Extraction using a Neural Network Architecture”).
SENNA is a fast and accurate neural network based semantic role labeling program that
allows a large scale extraction of semantic relations from biomedical literature [7]. Meanwhile,
EXCERBT oUers the possiblity to submit semantic queries like "list all phenotypes which are
caused by the wrn-gene and show me the sentences supporting the proposed relations"4. Following
is a sample table from the EXCERBT database facilitating the reader to grasp the form the
database is stored (Tab. 2.1). We postulate that the EXCERBT network is a scale-free one (see
3.2.3 for details on scale-free networks).

Source Source type Relation type Target Target type Evidence

brca1 gene at_activation_act TLS gene pmc:2625440:249:0:senna-2.0:0
lrrk2 gene at_activation_pas Microbial pathway pubmed:21552986:10:0:senna-2.0:1
dj1 gene at_inhibition_act Apoptosis phenotype pubmed:11550087:9:0:senna-2.0:0
snca gene at_regulation_act Transgene phenom pmc:2722989:91:0:senna-2.0:1

Table 2.1: Stored format of EXCERBT. "_act" emphasizes the active form while "_pas" the passive form. The
term between "at" and "_act" or "_pas" indicates the relation category between the source and the target.
There is a sum total of 18 categories representing diUerent verbs in EXCERBT. In this database, every active
relation for each tuple of 〈source, target〉 is entered once again as passive for the tuple 〈target, source〉 to
diUerentiate between incoming and outgoing edges.

2.1.2 Parkinson’s disease gene network

For the trial run of the local clustering method and as an approach to resolve the problem of
automated biomedical synonyms we created a smaller database of Parkinson’s disease from
EXCERBT network. We Vrst selected the entities "Parkinson Disease", "Parkinson disease" and
"parkinson disease" as source, then all their targets consisting of type "gene" and Vnally the
targets of these targets with type "gene" again. Such a network is deVned as an "Egocentric
network" (see 4.1 for details). If considered as an individual network it is basically a hairy ball.
Note that the term "Parkinson diesease" has the following synonyms5:

1. "parkinson disease"

2. "Parkinson’s disease"

The other term "Parkinson Disease" is not entered as a synonym, but has some 12 other disjoint
synonyms6. Apparently all of these terms should belong to the same set of synonyms. The
term "Parkinson’s disease" was not considered due to its special character apostrophe (’) which
would not play a signiVcant role in any semantic abberation.

We had two versions of this network, a modiVed one for network analysis and the local
clustering and a raw extracted version from EXCERBT for the synonym resolution. Special

4http://www.helmholtz-muenchen.de/en/mips/services/text-mining/index.html, September 26,
2012

5http://mips.helmholtz-muenchen.de/excerbt/rest/entities/synonyms/Parkinson%20disease,
September 26, 2012

6http://mips.helmholtz-muenchen.de/excerbt/rest/entities/synonyms/Parkinson%20Disease,
September 26, 2012
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2.1 Dataset

characters, duplicate entries and self loops were eliminated from the raw network resulting
into the modiVed one (see 3.3.1 for details).

Operation # Vertices # Edges

Local clustering 14,906 90,658
Synonym resolution 18,428 110,602

Table 2.2: Number of vertices and edges of the two versions of Parkinson’s disease gene network.

2.1.3 Yeast PPI network

Figure 2.1: Graphical visualization of the Y2H network of yeast interactome used as benchmark.

In order to check the correctness of any novel algorithm one needs to perform tests on a well
established and thoroughly investigated dataset. Yeast being the most researched genome in
the history of bioinformatics provides with such a dataset of protein-protein interaction. The
yeast PPI dataset we chose contains high quality binary interaction information provided by
high-throughput yeast two-hybrid (Y2H) screening. It has 2018 proteins and 2929 interactions
and is a scale-free network with subtle hierarchy (see 3.2.3 and 3.2.4). We shall use the
terminology Y2H union for this network henceforth [8]. The database was downloaded from
the supplements in Yu et al.7 [8]. The illustration of the Y2H union network is given in Fig. 2.1

7http://interactome.dfci.harvard.edu/S_cerevisiae/index.php?page=download

Syeda Tanzeem H.Charu, 2012 7

http://interactome.dfci.harvard.edu/S_cerevisiae/index.php?page=download


2 Materials

which was created by yEd, a powerful graph editing application8, from this database.

2.2 Hardwares and softwares

2.2.1 Hadoop and HDFS

The Institute of Bioinformatics and Systems Biology in the Helmholtz Zentrum Munich pro-
vided with a server cloud, "The EXCERBT cluster", containing 20 servers with 160 CPU cores,
480 GB RAM and 168 TB disk space. All the data processing, storage and computation with
EXCERBT was performed on this cluster. In our case the Hadoop software framework oUers
the fundamental architecture for the cloud computing.

The Apache Hadoop software library9 is a top level Apache project written in the Java pro-
gramming language, used and still being built by a global community of contributors. This
framework allows for the distributed processing of large datasets across clusters of computers.
It is designed to scale up from single servers to thousands of machines with local computa-
tion and storage and to work with thousands of computational independent computers and
petabytes of data. Hadoop was derived from Google’s MapReduce (see 2.2.2 for MapReduce)
and Google File System (GFS) papers [9].

Hadoop has its own distributed Vle system, known as HDFS (Hadoop Distributed File Sys-
tem)10. It is designed to store very large datasets reliably and to stream those datasets at high
bandwidth to user applications. By distributing storage and computation across many servers,
the resource can grow with demand while remaining economical at every size [10]. It also
oUers the facility of "The JobTracker" that farms out MapReduce tasks to speciVc nodes in the
cluster, ideally the nodes that have the data, or at least are in the same rack. The JobTracker is a
point of failure for the Hadoop MapReduce service. If it goes down, all running jobs are halted.

2.2.2 MapReduce Framework

MapReduce is a programming model for processing large datasets, also originally implemented
by Google. It has become a de facto standard for parallel computation at terabyte and petabyte
scales. MapReduce libraries have been written in many programming languages. A popular
free implementation is Apache Hadoop.

As the name itself suggests, the MapReduce computing paradigm works in basically two
steps: Map and Reduce. The input and intermediate data are stored in tuples of 〈key, value〉.
The computation proceeds in rounds. Each round is split into three consecutive phases [11]
[12]:

1. Map: In the map phase the input is processed one tuple at a time. The input data is
then split into even number of chunks. This allows diUerent tuples to be processed by
diUerent machines and creates an opportunity for massive parallelization. Each machine
performing the map operation, also known as a mapper, emits a sequence of 〈key, value〉
pairs which are then passed on to the shuYe phase.

8http://www.yworks.com/en/index.html, September 26, 2012
9http://wiki.apache.org/hadoop, September 26, 2012
10http://hadoop.apache.org/hdfs, September 26, 2012
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Figure 2.2: Shape counter by MapReduce. All the shapes are splitted into two chunks here, each chunk
containing the shape as key and the number of shape in that chunk as value. Then the chunks are
synchronized in the shuYe phase and transferred to the reducer which then counts the real number of each
shape by combining them.

2. ShuYe: This is the synchronization phase. In this step, the MapReduce infrastructure
collects all of the tuples emitted by the mappers, aggregates the tuples with the same key
together and sends them to the same physical machine.

3. Reduce: Finally each key, along with all the values associated with it, is processed
together during the reduce phase. The operations on data with one key are independent
of data with a diUerent key and can be processed in parallel by diUerent machines.

Fig. 2.2 depicts the phases in a MapReduce procedure11.

2.2.3 HiveQL

Apache Hive is a data warehouse system for Hadoop that facilitates easy data accumulation,
ad-hoc queries, and the analysis of large datasets stored in Hadoop compatible Vle systems.
It was originally developed by Facabook. Among other things it supports a simple SQL like
query language that enables users familiar with SQL to query the data. A compiler translates
hiveQL statements into a directed acyclic graph of MapReduce jobs, which are then submitted
to HDFS for execution [13]. Programmers who are familiar with the MapReduce framework
can plug in their custom mappers and reducers to carry out more sophisticated analysis that
may not be supported by the built in capabilities of the language12. We used hiveQL to analyze
EXCERBT on its basic properties like number of vertices, edges, degrees etc. Mainly because it

11Adapted from http://www.gridgainsystems.com, September 26, 2012
12http://hive.apache.org, September 26, 2012
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2 Materials

is scalable with more machines added dynamically to the Hadoop cluster and can be extended
with MapReduce framework and user deVned table functions.

2.2.4 Validation program: JUNG framework

The JUNG (Java Universal Network/Graph) Framework is a free, open source software library
for graph modeling written in Java. JUNG based applications can make use of the extensive built
in capabilities of the Java Application Programming Interface (API), as well as those of other
existing third party Java libraries [14]. The framework comes with a number of algorithms
from graph theory, data mining and social network analysis such as routines for clustering,
decomposition, optimization, random graph generation, statistical analysis, and calculation
of network distances, Wows, and importance measures (centrality, PageRank, HITS, etc.)13.
Sequential algorithms for graph theory are already well established and the results can be
considered as standard. Since the JUNG framework works sequentially on one single machine
we have applied it on the dataset of Yeast PPI network to validate our MapReduce algorithms.
We checked whether our proposed alogorithms render accurate results by comparing them
with JUNG framework outputs.

13http://jung.sourceforge.net, September 26, 2012
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3 Network Analysis
A network, regardless of its size, needs to be characterized so that it can be compared with
any other network. Not only that but one should also have a concrete idea about the basic
properties of the network beforehand in order to execute an operation as basic as clustering.
There are some elementary measures and models of networks that help the researchers to
understand whether their algorithm might even apply for the network under investigation. In
this chapter we revised these elementary measures and models of networks in order to analyze
the EXCERBT and parkinson disease gene networks.

3.1 Elementary network measures

There are a few basic network measures which describe the properties of a network to a great
extent. In the following we deVne the two most important measures that we further use to
analyze the EXCERBT network, namely degree distribution and clustering coeXcient. Let
G = (V, E) be an unweighted, undirected, non-empty graph. V is the set of vertices, E is
the set of edges. Let n = |V|, m = |E| and Γ(v) be the set of neighbors of a vertex v, i.e.
Γ(v) = {w ∈ V|(v, w) ∈ E}.

3.1.1 Degree distribution

In graph theory, the degree of a node in a graph is the number of edges incident to the vertex.
Or in other words, it is the number of neighbors of the respective node. In this work, the degree
of a node v is denoted by the term dG(v). According to the deVnition above, dG(v) = |Γ(v)|.

In directed networks (Fig. 3.1b) there is an incoming degree, dG(v)−, which denotes the
number of edges that point to a vertex and an outgoing degree, dG(v)+, which denotes the
number of edges that start from it. A vertex with dG(v)− = 0 is called a source while a vertex
with dG(v)+ = 0 is called a sink [15].

The degrees of the vertices in the graph in Fig. 3.1 are given in table 3.1:

Vertex Degree(dG(v)) Indegree(dG(v)−) Outdegree(dG(v)+)
A 3 0 3
B 3 1 2
C 2 1 1
D 4 3 1
E 2 2 0

Table 3.1: Degrees of the vertices in the graph in Fig. 3.1, both as directed and undirected graphs. Here A is
a source andE is a sink, if considered in a directed graph.

The degree distribution, P(dG), is the probability distribution of these degrees over the whole
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3 Network Analysis

network. It gives the probability that a selected vertex has exactly dG edges. P(dG) is obtained
by counting the number of vertices n(dG) with dG = 1, 2, 3, ..., n edges and dividing by the
total number of vertices n (adapted from [16]).

(a) An undirected graph. (b) A directed graph.

Figure 3.1: Examples of two graphs.

3.1.2 Clustering coeXcient

The clustering coeXcient of a vertex in a graph gives the measure of the cliquishness of
a typical neighbourhood and therefore a local property of a network. Sometimes it is also
called the local clustering coeXcient but for simplicity we shall further use the term clustering
coeXcient only. The clustering coeXcient, cc(v), for a vertex v is given by the fraction of
existing edges between its neighbors divided by the number of edges that could possibly exist
between them. For each neighbourhood Γ(v) there are at most dG(v)×(dG(v)−1)

2 edges that
could exist among the neighbors of the vertex v. Here dG(v) is the degree of a vertex v as

described above. For a directed graph
−→
G = (V,

−→
E ), (u, w) ∈ −→E is distinct from (w, u) ∈ −→E .

Thus, the clustering coeXcient for directed graphs is given as [17]:

cc(v) =
2× 1

2 × |{(u, w) ∈ −→E |u ∈ Γ(v) ∩ w ∈ Γ(v)}|
dG(v)× (dG(v)− 1)

(3.1)

In case of an undirected graph, the edges (u, w) and (w, u) are considered identical. Therefore
the clustering coeXcient for undirected graphs is deVned as:

cc(v) =
2× |{(u, w) ∈ E|u ∈ Γ(v) ∩ w ∈ Γ(v)}|

dG(v)× (dG(v)− 1)
(3.2)

Let us consider the vertex A in Fig. 3.1. The neighborhood of A is Γ(A) = {B, D, E}.
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There are two edges amongst its neighbors, namely between the vertices D and E and the
vertices B and D. As a vertex in an undirected graph the clustering coeXcient of A is:

cc(A) =
2× 1

dG(A)× (dG(A)− 1)
=

2× 2
3× 2

= 0.6666...

For a directed graph (Fig. 3.1b):

cc(A) =
1

dG(A)× (dG(A)− 1)
=

2
3× 2

= 0.3333...

The complete table of the clustering coeXcients of the vertices in Fig. 3.1 is given below:

Vertex cc(v) (undirected) cc(v) (directed)
A 0.67 0.33
B 0.67 0.33
C 1 0.5
D 0.5 0.25
E 1 0.5

Table 3.2: Clustering coeXcients of the vertices in the graph in Fig. 3.1, both as directed and undirected
graphs. Here the subgraph with A, D and E form a perfect clique and if isolated, these would have had a
clustering coeXcient of 1 in an undirected graph.

Another very crucial measure that is derived from both clustering coeXcient and degree is
the average clustering coeXcient of all vertices with dG edges which we denoted in this work
by C(dG). The average degree < dG > and the average clustering coeXcient < cc > depend
on the number of vertices (n) and edges (m). On the contrary, P(dG) and C(dG) act as a
network’s generic features since these are independent of the network’s size.

3.2 Network models

All networks can be diUerentiated into three important models using the two signiVcant
generic features (P(dG) and C(dG)) of a network described in section 3.1. Before analysing
any network it is essential to understand the diUerent types of network models and the role of
these two features in them.

3.2.1 The small world phenomenon

The small world phenomenon of a network can be described as the situation where most
vertices are not neighbors of one another, but can be reached from every other by a small
number steps. A small world network is particularly deVned to be a network where the typical
distance L between two randomly chosen vertices grows proportionally to the logarithm of the
number of nodes n = |V| in the network [16]. Social networks, the Wikipedia, gene networks,
protein-protein interaction networks are known to exhibit the small world phenomenon.
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3.2.2 Random network

A random graph is simple to deVne. An example of such a random graph is shown in Fig. 3.2a.
As a model of a real world network, it has some shortcomings regarding its degree distribution,
which is quite unlike those seen in most real world networks. The Erdös–Rényi (ER) model of a
random network starts with n number of vertices and connects each pair of vertices (u, v) ∈ E
with an independent probability p with each of the (n− 1) other vertices in the graph. The
probability P(dG(v)) that a vertex v has exactly the degree dG(v) is given by the binomial
distribution [18][19]:

P(dG(v)) =
(

n− 1
dG(v)

)
pdG(v)(1− p)n−1−dG(v) (3.3)

The degrees follow a Poisson distribution (Fig. 3.3a) in the limit of large n, which indicates that
most vertices have approximately the same number of edges. If plotted against dG, the C(dG)
appears to be a horizontal line (Fig. 3.4a) revealing the independency between the degree and
the clustering coeXcient.

(a) Random network. (b) Scale-free network. (c) Hierarchical network.

Figure 3.2: Examples of three diUerent network models. Adapted from [16].

The average path length of a random networktends to be very small (3.4) equipping it with a
small world property [16]:

L ∝ log|V| (3.4)

3.2.3 Scale-free network

Most networks in the real world, however, have a highly right-skewed degree distribution. A
large majority of vertices have low degree whereas a very few, known as hubs, have high de-
gree. Such networks happen to have degree distributions following approximately a power law:

P(dG) ∝ dG
−γ (3.5)

Here γ is the degree exponent which remains constant. In most real world networks with scale-
free properties γ ranges within the interval of [2, 3]. The hubs are not much of a signiVcance
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if γ > 3. However a smaller γ indicates quite the opposite. The Barabási-Albert model of a
scale-free network (Fig. 3.2b) has a power-law degree distribution that is characterized by the
degree exponent γ = 3. Such distributions are seen as a straight line on a log–log plot (Fig.
3.3b).

(a) Random network. (b) Scale-free network. (c) Hierarchical network.

Figure 3.3: Comparison among the degree distributions of three diUerent network models. Adapted from
[16]. (b) and (c) depict log-log plots.

Similar to a random model, C(dG) is independent of dG in this model as well. Therefore it
does not show any inherent modularity (Fig. 3.4b) [20][16]. Another important feature of a
scale-free network is the ultra small word phenomenon [21]. The average path length is [16]:

L ∝ loglog|V| (3.6)

This average path length is signiVcantly smaller than log|V| that characterizes random small
world networks (compare Eq. 3.4). These networks play an important role in biological network
studies for their structural and dynamical properties. Social networks, the World Wide Web
and protein-protein interaction network are scale-free.

3.2.4 Hierarchical network

Hierarchical network models are generated by combining clusters with the help of iterative
algorithms resulting into the coexistence of modularity, the unique properties of the scale-free
topology and the high clustering of the vertices at the same time [22]. In such network models
the sparsely connected vertices are part of highly clustered areas and the communication
between the diUerent highly clustered neighborhoods are maintained by a few hubs (Fig. 3.2c).
A real world example for such a model is shown in Fig. 3.5.

Being part of the scale-free model family, the degree distribution of the hierarchical network
model also follows the power law mentioned above (Eq. 3.5). This architecture integrates a
scale-free topology with an inherent modular structure by generating a network that has a
power-law degree distribution with the following degree exponent [23]:

γ = 1 +
ln M

ln M− 1
(3.7)

Syeda Tanzeem H.Charu, 2012 15



3 Network Analysis

(a) Random network. (b) Scale-free network. (c) Hierarchical network.

Figure 3.4: Dependancy between clustering coeXcient and degree of three diUerent network models.
Adapted from [16].

Here, M is the replication factor of the network. In Fig. 3.3c, the starting point is a small
cluster of four densely linked vertices (the four cyan colored central vertices) and as such the
replication factor, M = 4 and according to the Eq. 3.7, γ = 1 + ln 4/ ln 3 = 2.26.

Figure 3.5: Hierarchical network: Log-log plot of degree distribution of the actor collaboration network
(also known as the hollywood network) with n = 212, 250 vertices and average degree < dG >= 28.78.
The dashed line has a slope γActor = 2.3. Adapted from [20].

The average clustering coeXcient is independent of size of the system and has a value as high
as < cc >≈ 0.6. The most important signature of hierarchical modularity is the scaling of the
clustering coeXcient expressed as a function of the degree which is quite the contrary to other
scale-free models:

C(dG) ∝ dG
−β (3.8)

The exponent β takes the value of 1 in Fig. 3.4c which renders a straight line of slope -1 on a
log–log plot.
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3.3 Methods

3.3.1 Investigating EXCERBT network and creating test dataset

A prerequisite to any speculation or potential network algorithms is to investigate the network
on its fundamental properties. The EXCERBT network was surveyed regarding the following
properties with the help of some basic queries by hiveQL (see section 2.2.3):

1. The number of vertices (n = |V|) and edges (m = |E|) including incoming edges or
indegree (dG(v)−) and outgoing edges or outdegree (dG(v)+).

2. The number of total relations as a weighted network.

3. The number of relations as a directed network divided in active and passive relations
selecting _act and _pas as relationship type from the database respectively.

4. Total degrees of all vertices and subsequently the degree distribution (P(dG)) (see Fig.
3.9 for result). The EXCERBT network was considered as an undirected and unweighted
one in this step.

A modiVed test set

After observing the results in this step, we created a new test set for further procedures. We
observed some junk entities and data anomaly in the EXCERBT database which are nothing
but byproducts of text mining. There are also plenty of apparently reduntant entries in this
database but these are essential for the semantics, e.g. one should be able to Vnd out the desired
same output for both Protein and proteins. Nonetheless the redundancy needs to be dispatched
for transparent results for the computation. The table 3.3 shows an example of such entries.

Case Source Source type Relation type Target Target type Evidence

1. COX2 gene at_activation_act COX-2 gene pmc:1201567:63:0:senna-2.0:0
COX-2 gene at_activation_act COX2 gene pmc:1201567:63:0:senna-2.0:0

2. COX2 gene at_activation_act 5-@LO gene pmc:1794527:20:0:senna-2.0:0
COX-2 gene at_activation_act 5-@LO gene pmc:1794527:20:0:senna-2.0:0

3. COX2 gene at_activation_act 5-LO gene pmc:1794527:20:0:senna-2.0:0
COX-2 gene at_activation_act 5-LO gene pmc:1794527:20:0:senna-2.0:0

4. COX2 gene at_regulation_act 5-LO gene pmc:1794527:126:0:senna-2.0:1
COX-2 gene at_regulation_act 5-LO gene pmc:1794527:126:0:senna-2.0:1

Table 3.3: Example of semantically same but physically redundant data in the EXCERBT database. Note
that even relation types and evidences are also same for the cases.

COX2 and COX-2 are the same gene, just the spelling is diUerent. We assume that the case is
quite the same for 5-@LO and 5-LO. They are not direct synonyms of one another but share a
common synonymous term LOG51. Without curing the redundancy we have 4 vertices and 8
edges in Tab. 3.3. Therefore we had to prepare a subset of EXCERBT database as our Vnal test
dataset by the following way:

1http://mips.helmholtz-muenchen.de/excerbt/rest/entities/synonyms/5-LO, September 26, 2012
http://mips.helmholtz-muenchen.de/excerbt/rest/entities/synonyms/5-@LO
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1. Deleting a few junk entities, like: ans)-, cells, at(.), result, study, alle and alpha.)-.

2. Removing special characters like ,, :, /, - etc.

3. Converting all entities to lower case. By doing so we ignored the types of both the source
and the target entities.

4. Deleting duplicate entries so that every resulting edge is unique.

5. Deleting all self loops.

After this procedure we receive 2 vertices out of Tab. 3.3 namely cox2 and 5lo with 1 edge.
There are also more than one relation type between two entities abundantly. For example,
COX2 and 5-LO has the relation type at_regulation_act besides the type at_activation_act (cases
3 and 4 in Tab. 3.3). One can assign the relation type as unit for weight between two vertices.
However we considered the EXCERBT network as an unweighted one. The complete results
are presented and discussed to the point in section 3.4.

3.3.2 Calculation of clustering coeXcient

It is essential to determine the degree distribution (P(dG)) and the average clustering coeXent
(C(dG)) of the EXCERBT network in order to diagnose its charcteristics. In this section we
present algorithms with a view to compute the clustering coeXcients of the vertices (V) of an
undirected graph, G = (V, E). There is also an equivalent way to Eq. 3.2 to view the clustering
coeXcient. For a pair (u, w) ∈ E to contribute to the numerator, they must both be connected
to each other and to the vertex v itself. The set of vertices {u, v, w} must form a triangle in
G. A triangle in G is deVned as {(u, v, w) ⊆ V|(u, v), (v, w), (u, w) ∈ E}. The algorithms
presented here to compute clustering coeXcient simply determines the numerator of Eq. 3.2
by counting the number of triangles incident on each vertex. Deriving the denominator is not
much of a challenge since it can be calculated from the degree of the respective vertex (dG(v))
alone which is counted inevitebly at the beginning of all clustering coeXcient algorithms.

Conventional algorithm for clustiering coeXcient

We begin by starting with the conventional algorithm for counting the number of triangles in
the graph. This algorithm iterates over all of the vertices in the graph. It works by pivoting
around each vertex and then checking if an edge exists that will complete any of the resulting
2-paths to form a triangle. This algorithm is equivalent to the one introduced by Watts and
Strogatz [17]. The pseudocode is given in Code 1 [11].

Each triangle (u, v, w) is counted 6 times. Once as (u, v, w), (u, w, v), (v, u, w), (v, w, u),
(w, u, v) and (w, v, u). Therefore the value is divided by 3 after the triangles count which
is then eventually equal to the numerator of the Eq. 3.2. The algorithm runs in a time
O(n< dG >2), where n is the number of vertices of the network and < dG >2 is the average
degree squared. A single high degree vertex can lead to a quadratic runtime. Such high degree
vertices are often found in real world large graphs. So this algorithm is not practical for massive
networks like the EXCERBT network. Even for a small graph the worst case would yield a
runtime of O(n3) where one vertex is connected to every other vertices.
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Algorithm 1 Clustering coeXcient for (V,E): Sequential

1: C ← 0; T ← 0
2: for v ∈ V do
3: for u ∈ Γ(v) do
4: for w ∈ Γ(v) do
5: if (u, w) ∈ E then
6: T ← T + 1
7: end if
8: end for
9: end for
10: end for
11: T ← T/3
12: C ← T/(|Γ(v)| ∗ (|Γ(v)| − 1))
13: return C

3.3.3 MapReduce approach for clustering coeXcient

The algorithm presented above applies for network data Vtting into memory of absolutely one
single machine. However, any computation on massive graphs has to be executed in more
machines and ideally by using parallel algorithms due to their hugeness and storage problem.
In this section we demonstrate the adaptation of the sequential algorithm sketched in Code 1 to
the MapReduce framework elaborately. For simplicity we have considered the input network
as an undirected one. The idea of the algorithm was adapted from [11]. In a nutshell, this
attempt lists up all possible edges Vrst, then looks for vertices in the vicinity and determines
whether a triangle can be formed or not. The usual concept of searching for triangles from the
vertex’s point of view is just reversed here.

The original input has to be a simple tab seperated table without heading including all edges
amongst the vertices. The table 3.4 shows a sample input for the graph in Fig. 3.6; the heading
in the table is for explanatory purpose and should not be included in the original text input.
As already mentioned in section 2.2.2, all data are stored in 〈key; value〉 pairs.

Figure 3.6: The sample input graph for the demonstration of the parallel algorithm by MapReduce.
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Source (v) Target (u)
(key) (value)

A B
A D
A E
B C
B D
C D
D E

Table 3.4: Tabular input of the sample network in Fig. 3.6 to demonstrate the MapReduce algorithm. The
left column (Source) represents the key and the right one (Target) the values.

Algorithm 2 Clustering coeXcient for (V,E): MapReduce

1: Map 1: Input: 〈(u, v); ∅〉
2: emit 〈u; v〉
3:

4: Reduce 1: Input: 〈v; S ⊆ Γ(v)〉
5: for u : u ∈ S do
6: emit 〈(u, v); $〉 . Mark the true edge
7: end for
8: for (u, w) : u, w ∈ S do
9: emit 〈(u, w); v〉 . Create a possible triangle out of a possible edge
10: end for
11:

12: Map 2: Input: 〈(u, v, $); ∅〉, 〈(u, w, v); ∅〉
13: emit 〈(u, w); S ⊆ V ∪ {$}〉 . Emit all vertices in the vicinity of the possible edge
14: . For a true edge a special character is included.
15:

16: Reduce 2: Input: 〈(u, w); S ⊆ V ∪ {$}〉
17: if $ ∈ S then . If the special character is included
18: for v ∈ S ∩V do
19: emit 〈v; 1〉 . A true edge => a true triangle
20: end for
21: end if
22:

23: Map 3: Input: 〈(v, 1); ∅〉
24: emit 〈v; ∑ (1)〉
25:

26: Reduce 3: Input: 〈v; ∑ (1)〉
27: i← ∑ (1)
28: emit 〈v; 2×i

(|Γ(v)|×(|Γ(v)|−1))〉
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First mapper

The Vrst mapper lists all the vertices and their respective neighbors (Tab. 3.5).

Source (v) Neighbors (S ⊆ Γ(v))
(key) (value)

A (B, D, E)
B (A, C, D)
C (B, D)
D (A, B, C, E)
E (A, D)

Table 3.5: The temporary output of the Vrst mapper after processing the input from table 3.4.

First reducer

The reducer works in 2 steps here. In Vrst step it assigns a special character $ to each true
edge 〈(u, v); $〉. This special character is to distinguish the true edges from other possible
edges and does not appear any where else in the procedure. In the second step it creates
tuples of every two vertices (u, w) contained in the neighbor list of each vertex (v). Then the
respective vertex (v) along with its degree (dG(v)) is assigned as key to each of the tuples
which act as values (Tab. 3.6). The degree was not mentioned in Code 2 until the last line
where the mathematics is performed. It can be easily calculated in this step by determining the
magnitude of the neigh lost. Technically we need to drag along the degree with the vertex from
the very beginning. The reducers work in parallel and independent from one another. Being
so we would have to risk "losing" the information about the degree otherwise and compute
the degree once again in the end. This would be pretty nagging let alone time consuming. A
simple concatenation does the trick.

True edges Special character Possible edges Source+degree
(key) (value) (key) (value)

A, B $ B, D A+3
A, D $ B, E A+3
A, E $ D, E A+3
B, A $ A, C B+3
B, C $ A, D B+3
B, D $ C, D B+3
C, B $ B, D C+2
C, D $ A, B D+4
D, A $ A, C D+4
D, B $ A, E D+4
D, C $ B, C D+4
D, E $ B, E D+4
E, A $ C, E D+4
E, D $ A, D E+2

Table 3.6: The intermediate output of the Vrst reducer after processing the temporary output of the Vrst
mapper from table 3.5.
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Second mapper

Edge (u, w) Sources (v) Edge (u, w) Sources (v)
(key) (value) (key) (value)

A, B ($, D+4) C, D ($, B+3)
A, C (B+3, D+4) C, E (D+4)
A, D ($, B+3, E+2) D, A ($)
A, E ($, D+4) D, B ($)
B, A ($) D, C ($)
B, C ($, D+4) D, E ($, A+3)
B, D ($, A+3, C+2) E, A ($)
B, E (A+3, D+4) E, D ($)
C, B ($)

Table 3.7: The temporary output of the second mapper after processing the Vrst reducer output from table
3.6. The highlights are explained in the second reducer step.

In this step the Map process lists up all the values from the output of the Vrst reducer according
to the respective keys (Tab. 3.7).

Second reducer

Source+degree Counts
(key) (value)

D+4 1
B+3 1
E+2 1
D+4 1
D+4 1
A+3 1
C+2 1
B+3 1
A+3 1

Table 3.8: The intermediate output of the second reducer after processing the temporary output of the
second mapper from table 3.7.

The second reducer performs probably the most important task in the whole procedure namely
counting the triangles. There are three possible cases in this step:

1. The reducer ignores the case where the size of the value list delivered by the second
mapper is 1 in spite of the special character $. No triangles can be formed in this case.

2. The reducer also ignores the case if the list contains more than one element but no $.
Such examples are highlighted red in table 3.7.

3. Triangles are counted only and only if the list size is greater than 1 and the special
character $ is included in it. Entries highlighted blue in table 3.7 represent this case.

If the command for counting triangles is true (the last case listed above), the reducer executes
the following actions:
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3.3 Methods

1. Capture each element except $ from the value list.

2. Recast it as key for the output.

3. Assign 1 as value to the key, meaning 1 triangle has been counted.

The output is given in table 3.8.

Third mapper

This map process sums up all the 1s of the same key and sends them to the third reducer for
the Vnal calculation. The sum of the 1s are nothing else than the number of triangles counted
per vertex.

Source+degree List of 1s #Triangles
(key) (value)

A+3 〈1, 1〉 2
B+3 〈1, 1〉 2
C+2 〈1〉 1
D+4 〈1, 1, 1〉 3
E+2 〈1〉 1

Table 3.9: The temporary output of the third mapper after processing the second reducer output from table
3.8.

Third reducer

On receival of the temporary output from the third mapper, the third reducer splits the degree
(dG(v)) away from the key (vertex (v)), fetches its value that stands for the respective triangle
count and calculate the clustering coeXcient by using the Eq. 3.2. The degree contributes to
the denominator and the triangle count to the numerator. The table 3.10 presents the clustering
coeXcients of the vertices of the graph in Fig. 3.6 which is basically the same as the one in Fig.
3.1a. The reducer output of table 3.10 is also same as the clustering coeXcients shown in the
second column of table 3.2.

Vertex Degree #Triangles Clustering coeXcient
(v) dG(v) cc(v)
A 3 2 0.67
B 3 2 0.67
C 2 1 1
D 4 3 0.5
E 2 1 1

Table 3.10: The Vnal output of the third reducer after processing the temporary output of the third mapper
from table 3.9.

3.3.4 Validation

As stated in prevoius chapter (2.1.3) we took the Y2H union network of yeast interactome
as benchmark. We applied our algorithm for MapReduce framework and then the relevant
algorithms provided by the JUNG framework (2.2.4 to the Y2H union network. We determined
its degrees and the clustering coeXcients. Then we compared both of the outputs by plotting
them.
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Framework (2).

Figure 3.7: Comparison of the probability distribution of degrees of Y2H union network of yeast interactome
computed by the two algorithms.
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(a) Clustering coeXcient computed by sequential algo-
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Figure 3.8: Comparison of the clustering coeXcients of Y2H union network of yeast interactome computed
by two algorithms.
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3.4 Results and discussions

Comparison of degree distribution

We plotted the degrees as probability distribution P(dG) in a log-log plot. Fig. 3.7a and Fig.
3.7b illustrate the degrees computed by JUNG and MapReduce frameworks respectively. Both
of plots show exactly the same result.

Comparison of clustering coeXcients

To compare the outputs for clustering coeXcients we plotted them also as histogram. We
omitted the entries with a clustering coeXcient of 0.0. Fig. 3.8a illustrates the output by JUNG
and Fig. 3.8b the output by MapReduce. Both of the histograms are visibly analog to each
other, quite the same as in case of degree distribution.

After observing absolutely no diUerences in the results we approved of the proposed algorithm
for MapReduce framework.

3.3.5 Application of MapReduce algorithm

Finally we applied our MapReduce algorithm to determine degrees and clustering coeXcients
of the EXCERBT network. Not intending to overload the cluster we conditioned a highest
degree of not more than 10,000 for an entity. One can attempt to go for degrees even higher
than that but such vertices have no empirical relevance in systems biology. After obtaining the
Vnal reducer output we analyzed the behavior of P(dG) and C(dG). We used the Eq. 3.5 and
Eq. 3.8 for this purpose and calculted the two exponents γ and β. The same procedure was
executed on our modiVed version of Parkinson’s disease gene network. We calculated the two
exponents γ and β for this network as well.

3.4 Results and discussions

3.4.1 A few numerics concerning EXCERBT network

We found out the following numerics regarding the EXCERBT database after analysing it by
hiveQL:

1. Total number of entries in the database regarding source, source types, target, target
types, relation tapes and evidences: 1,436,919,650.

2. 718,459,349 rows regarding active relations, i.e. rows with relation type _act.

3. 718,459,590 rows regarding passive relations, i.e. rows with relation type _pas.

4. 396,548,267 relations or edges considering the network as a weighted one taking the
relation type in account.

5. 168,880,702 edges considering the network as an unweighted but directed one comprising
84,440,363 outgoing and 84,440,339 incoming edges.

6. 147,804,853 edges considering it as an unweighted and undirected one.

7. The entity ans)- has the highest degree of 179,572. This entity comes from the english
article "an".
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8. Average degree is: 250.8474 and the median lies at: 17.

The sum of the active and passive relations do not equal the total row count (see Tab. 3.12) in
the EXCERBT database:

718, 459, 349 + 718, 459, 590 = 1, 436, 918, 939 6= 1, 436, 919, 650

There is a diUerence of 711 rows. We investigated further and found out an anomaly in case of
the three entities Imigrane, L 654969 and Nisis. Exactly 711 entries (476 entries of active relation
type and 235 of passive relation type) regarding these three entities are askewed by one single
tab delimiter in the EXCERBT database. The target type is somehow missing which caused a
distortion in the entries. As a result, the source type is entered in the column for relation type,
the relation type slipped into the column for target and Vnally the actual target is entered in
the taget type column (Tab. 3.11).

Source Source type Relation type Target Target type Evidence

Imigrane metabolite at_regulation_act Sensation pubmed:7935925:1:0:senna-2.0:0
Imigrane metabolite at_regulation_act Thoraces pubmed:7935925:1:0:senna-2.0:0
L 654969 metabolite at_activation_act Activity pubmed:1964954:3:0:senna-2.0:0
L 654969 metabolite at_inhibition_act NB 598 pubmed:8504141:2:0:senna-2.0:0
Nisis metabolite at_activation_act Operon pubmed:17012392:0:0:senna-2.0:0
Nisis metabolite at_activation_act Immunity pubmed:17012392:0:0:senna-2.0:0

Table 3.11: Two examples each for the entities: Imigrane, L 654969 and Nisis causing the anomaly in the
database.

We Vrst assumed that no particular target types were probably assigned to the targets of these
entities. But after further investigation we found out the contrary for other sources. The
targets possess target types very well. This is not a biological phenomenon nor is it intended
for the semantics. It is a casual mistake which can be easily solved.

According to the handshaking lemma [24] (Eq. 3.9) the sum of all outdegrees (dG
+) should be

equal to the sum of all indegrees (dG
−) for a balanced directed graph.

∑
v∈V

dG(v) = 2|E| (3.9)

The EXCERBT network is supposed to be a balanced graph. According to the EXCERBT
text mining tool there should be a semantically same incoming edge detected by relation type
*_pas for every outgoing edge detected by *_pas and vice versa. And yet it was not the case:

∑
v∈V

dG(v)
+ = 84, 440, 363 6= 84, 440, 339 = ∑

v∈V
dG(v)

−

Nevertheless we can ignore this marginal diUerence comparing it to the massiveness of
this network. For further proceedings we ignored the entities Imigrane, L 654969 and Nisis and
received the following numerics:
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3.4 Results and discussions

1. 349,115 vertices with edges in both directions.

2. 132,576 vertices with only outgoing edges.

3. 100,237 vertices with only incoming edges.

Note that the sum of the vertices while considered with directed edges equals to the number of
total vertices in the new set:

349, 115 + 132, 576 + 100, 237 = 581, 928

A brief comparison of the statistics before and after correction is given in table 3.12.

Before correction After correction After modiVcation

# Rows 1,436,919,650 1,362,685,409
# Vertices 589,222 581,928 424,869
# Edges 147,804,853 140,296,936 90,774,846

Table 3.12: The number of rows, vertices and edges in the EXCERBT database before and after ignoring the
three entities Imigrane, L 654969 and Nisis and after the Vnal modiVcation.

Henceforth, we considered our new dataset from the EXCERBT database as an undirected and
unweighted network and modiVed it as described in 3.3.1. Our test set now consists of 424,869
vertices and 90,774,846 undirected edges (Tab. 3.12).

● ●
●

●
●

●
●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●
●●
●
●●●●●●●
●●●●●
●
●●●
●●●
●
●●
●●●●
●
●●
●●
●●●
●●●●●
●●●●●●●●●●●
●
●●●
●●
●●●●●●●●

●
●●
●
●●●
●●●●
●●
●
●
●
●●●●●●●●
●●●●
●
●●
●
●●●
●●●
●
●●●●●●
●●●●●
●●●●●●
●●●

●

●●●
●
●●●
●

●●
●
●●●
●●●●
●

●
●●●●●
●
●●●
●

●●●●●
●●●●
●
●●●●
●
●●●●●
●

●

●
●
●

●
●
●●●
●●●●●●●
●●
●
●●
●

●●
●
●●●●
●●●●●●●
●
●●
●
●●●
●
●●
●
●

●

●
●●
●
●●●●●●●
●●●
●●
●
●
●

●
●●●●
●

●
●●
●
●

●
●●●
●
●
●

●
●●●
●
●●●
●
●●●●●
●
●●
●●

●
●
●

●
●
●●
●●
●
●
●●
●●
●●
●

●
●●
●
●●
●●●
●

●
●●●

●

●
●
●
●
●●
●
●●●
●
●●●
●
●

●●●
●
●●

●●
●
●●●●●●
●
●●●●●●
●

●
●
●●
●●●

●

●

●

●
●
●

●

●

●●

●

●●
●

●

●

●●
●●●●●●●●●●

●

●

●●

●●
●
●
●●●

●●
●
●
●●●●
●
●

●

●
●
●
●●●
●●

●

●
●●
●●
●●
●
●●
●

●
●●●●
●●●

●
●●
●●
●
●
●●

●
●●
●
●

●

●

●
●●
●
●
●
●
●●●
●●
●
●●
●
●●

●

●
●●
●
●
●
●

●●
●●●
●●
●
●●
●●

●●
●●
●
●
●●●
●
●
●

●
●
●●●

●
●●●

●

●
●
●
●●●
●
●●
●
●●●●●
●●

●
●
●●●
●●
●

●●●
●

●

●

●
●●●
●●

●

●●●●●
●

●

●●
●●
●●
●
●

●●

●
●
●

●●●

●●
●●
●
●

●

●
●

●

●●
●

●●

●
●

●

●●
●●●

●

●

●●
●●●
●

●●
●
●

●●

●

●●
●
●●
●
●●
●
●●●

●

●
●

●

●●
●
●●

●
●●●●

●

●

●
●

●

●
●●●●●
●●●

●

●

●

●●●
●
●●
●
●

●
●
●●
●

●
●
●
●
●
●
●
●

●
●●●
●

●

●
●●
●
●

●

●●
●

●●

●●
●
●
●
●
●●

●

●●●

●

●
●
●●●
●
●●

●●
●

●
●

●●●
●●●●
●
●

●●

●

●●●●●●
●

●

●

●
●

●
●●

●●

●

●
●

●●●

●●
●

●●
●
●

●●
●

●
●●
●●
●

●
●
●
●

●

●●

●

●

●

●
●
●

●
●

●

●
●
●

●
●

●●

●

●●●●
●
●
●●
●●
●
●

●

●
●
●●

●

●
●

●

●

●●

●●

●
●●

●

●
●
●

●
●
●

●
●
●
●

●

●

●

●●●●
●●

●

●●

●
●
●

●

●●

●
●
●
●●●

●
●
●

●●●

●

●

●

●●
●

●
●

●●●

●

●

●

●

●
●

●●
●●●●●

●

●●●
●●

●●

●

●
●
●
●
●●

●
●
●

●
●
●
●
●

●
●

●●
●
●
●

●

●●●●
●●●

●

●

●

●

●

●

●
●
●●

●

●

●
●

●
●

●●●
●

●
●

●
●
●●
●
●●
●●
●●
●

●●
●
●

●

●

●
●●
●

●
●
●●
●

●●●

●
●
●

●
●
●

●
●

●●
●
●

●

●

●

●

●●
●

●

●●
●

●
●

●

●●
●

●

●

●

●
●
●

●

●●
●

●●●
●
●

●

●

●

●

●●

●

●
●
●

●

●

●●●

●

●●
●

●

●●●
●

●
●●
●
●●

●

●●
●

●

●
●

●●

●
●

●

●
●

●

●
●●
●●
●●

●

●●
●●

●●

●

●●

●
●

●

●●

●●

●
●

●
●

●

●
●
●●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●●
●●

●

●

●
●

●

●

●

●
●
●●

●
●●

●

●

●
●

●

●

●
●

●●

●
●

●

●
●●●
●

●
●
●

●

●

●

●

●

●

●

●●

●

●●●
●
●

●
●

●●

●

●

●●●

●

●●
●●●●●

●

●

●
●

●

●●
●●
●

●

●

●
●●
●
●
●
●

●

●

●

●

●●

●

●●

●

●

●
●

●

●●●●●●

●●
●

●
●●●
●
●
●

●
●

●

●●●
●●

●●

●

●
●

●

●

●

●

●

●

●

●
●●
●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

●

●
●●
●

●

●

●

●

●●●●

●

●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●●

●●
●

●
●

●

●

●

●
●
●

●

●
●

●

●●

●
●

●●

●

●
●
●

●

●
●●●
●

●

●

●●

●
●
●

●●

●

●
●

●
●

●

●

●
●
●
●

●
●●

●●

●●
●

●

●●

●

●

●

●●

●

●

●●
●
●

●
●

●●
●
●
●●
●
●
●
●

●

●
●

●
●●

●
●
●

●
●
●
●

●

●●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●
●
●●

●

●

●
●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●●

●

●
●

●

●
●●

●

●

●

●●
●

●

●
●
●

●

●

●●

●●
●●●

●
●

●
●

●

●●
●●

●

●

●

●
●
●●
●
●

●

●●●●
●
●●

●

●●
●
●

●

●
●

●

●

●

●
●

●

●●

●
●
●

●●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●●

●

●

●

●

●
●

●●●

●

●●

●

●

●●
●

●

●

●

●
●
●

●●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●
●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●
●●

●

●

●

●
●
●
●
●
●

●
●
●

●

●
●
●
●

●

●

●

●

●

●

●●●
●

●

●

●

●

●●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●
●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●

●

●●●●
●
●

●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●●
●

●●

●

●
●

●●●
●
●●
●
●

●

●

●

●
●

●●●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●

●
●

●

●
●
●●
●

●

●
●

●●

●

●

●

●

●
●

●

●
●●●

●

●

●

●
●●●●
●

●

●
●

●●

●

●

●

●

●

●●●

●

●

●●

●

●●
●●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●

●

●

●

●●

●

●

●●

●●●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●●
●

●

●
●
●●

●●

●
●

●

●
●●●
●

●

●●

●

●

●

●●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●●

●

●
●●

●●

●

●

●●
●●●

●●●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●●

●

●
●
●
●

●

●

●

●

●

●

●

●
●
●
●

●●

●

●

●

●
●

●●

●●

●

●

●

●

●●
●
●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●●

●

●

●●●

●●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●
●

●●

●

●

●●

●

●

●●
●

●●●

●

●

●●

●
●
●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●●

●

●●

●

●

●●●●●

●●

●

●

●●

●

●

●

●

●●

●

●

●
●
●●
●
●
●
●●

●

●
●

●

●

●●
●
●

●

●●●

●

●

●

●

●

●

●
●

●●●

●

●●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●
●●

●●

●

●

●●

●

●

●

●

●

●●●●●●

●
●

●

●
●
●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●●

●

●
●

●

●●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●●●●●

●

●

●

●

●

●●●

●●

●

●

●

●
●
●

●

●

●●

●

●

●●●●●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●●●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●●●●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●●●

●
●

●●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●●●

●

●

●
●

●●●

●●●

●

●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●●

●

●●

●●●

●

●

●●

●

●

●●
●

●●

●●

●

●●

●●

●●

●●

●

●

●
●
●

●

●
●

●●

●●

●●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●
●

●

●

●●

●

●●

●

●

●
●
●

●●●●

●

●●

●●

●

●

●

●

●

●

●●●

●

●

●

●●

●●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●●
●

●

●●

●

●

●

●●

●●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●●

●

●●

●●

●

●●

●●

●●

●●

●

●

●

●●●●●

●

●

●●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●●

●●

●

●

●●

●

●

●●

●

●●●●●●

●

●●

●

●

●●

●

●●●●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●●●

●●

●●

●

●●

●●

●

●

●

●●●●●●

●

●●●●

●
●

●●●

●●

●

●

●●●●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●●●

●

●●

●●●

●

●

●

●●●

●●●

●

●●●

●

●

●

●●●

●

●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●●●

●

●

●

●●●

●●●●●●●●

●

●●●

●●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●●

●

●

●●●●

●●●

●

●

●●●●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●●

●

●

●●●

●

●

●●●●

●

●

●●

●

●

●●

●

●●

●

●

●

●●

●

●●

●
●

●●

●

●

●

●●●

●

●

●●

●

●

●

●●●

●●

●●

●

●

●

●●

●●●●●

●●

●●

●

●●●●●

●●●●

●

●●●

●●

●●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●●

●

●●●●●

●●

●●

●

●

●

●

●●

●

●
●

●●●●●●●

●

●●

●

●●

●

●●

●

●●●

●

●●●

●

●●

●●●

●●●

●

●

●

●

●●●

●

●

●●●●●●●

●

●

●●●●●●●

●

●

●●

●

●●

●

●

●●●●●

●

●

●

●●●●●●●●●●

●●

●●

●

●●

●

●

●

●

●●

●●●

●

●

●●

●

●●

●

●

●

●●

●●●●

●●

●●

●

●●●

●●●

●●

●

●

●●

●●●●

●

●●●●●

●●

●●●

●●

●

●

●

●●●●●●●

●

●●

●

●●●●

●

●

●

●

●●

●●●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●●●●●●●

●

●●●

●●

●●●●●

●

●●

●

●

●

●

●

●●●●

●

●●●●●

●

●●

●●

●

●●●●●●

●●

●●

●

●

●●●●●

●●

●

●

●●●

●

●●●●●

●

●●●●●●●●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●●

●

●

●●●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●●

●

●●

●

●

●●●●●●

●

●●

●

●

●●

●

●

●●●●

●

●●●●

●●

●●●●●

●

●●●●●●

●

●

●

●●●●●●●●●

●

●●●●●

●

●●

●

●●●

●●●●●

●●

●

●●●

●●

●●●

●

●●●

●●

●

●

●●

●

●

●

●

●

●●●●●●●●●

●

●●

●

●●

●

●●

●●●

●

●

●●

●●●

●

●●

●

●

●●●

●●●●●●

●

●●

●

●●●●●

●

●●●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●●●

●●●●●●●●

●

●●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●●●●●●●●●●

●●●

●●●●

●●●

●

●

●

●

●●●●

●

●●

●

●●●

●

●●●●

●

●●●●●●●●●●●●

●

●●

●

●

●

●●●●

●

●●●●

●●

●

●

●●●

●●●

●●●●

●

●●●●

●

●●●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●●

●

●●

●

●

●

●●●●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●●●

●

●

●

●●●●●

●●

●●●●●●●●

●

●

●●●

●

●

●●●●●●●●●

●

●●

●

●●

●

●●●●

●

●●

●

●●

●●

●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●

●

●

●●●●●●

●

●●

●

●●●●

●

●●

●●●●

●

●●●●●●●●●●

●

●●

●

●

●

●

●●

●

●●●●●

●

●●●●●●●●

●

●●●

●

●●

●

●

●

●●●●●●●●●

●

●

●

●●●●●●●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●

●●

●●

●

●●●●●●●

●

●

●

●●

●

●

●

●

●

●●●●●●●●●

●

●●●●●●●●●●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●

●

●●●●●

●

●

●

●●●●●

●

●●●●●●●●●●●●

●●

●

●

●

●

●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●●

●●

●●

●●●●●

●

●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●

●

●●●●

●●

●

●

●●●●●●●●●●●●●●

●

●

●

●●●

●

●●●●●●●●●●●●

●

●●●●

●

●

●

●●●●●●●●●

●

●●●●●●●

●●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●●

●●●●●

●●

●●●

●

●●●●

●●

●

●

●●●●●●●

●●

●●●

●

●●●●●

●

●●●

●

●●●

●

●●

●

●●●●●●

●

●

●●

●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●

●

●●

●●●

●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●

●

●●●●●●

●●

●●●●

●

●●●●●●●●●

●

●●●●

●

●●

●

●●●

●

●

●

●●●●●

●

●●●

●

●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●

●

●●●●●●●●●●

●●

●●●●●●●●

●

●●●●●

●

●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●

●

●●

●●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●

●

●●●●

●●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●

●

●

●

●●●●●

●

●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●

●

●●●●●●●●●●

●

●●●●●●●

●

●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●

●

●

●●●

●

●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●

●

●●●

●

●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

100 101 102 103 104 105

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

(P
(d

G
))

Degree (dG)

Figure 3.9: Log-log plot of the degree distribution of the EXCERBT network computed by hiveQL which
also uses MapReduce. All the vertices are included here. The slope of the dashed line gives the degree
exponent γ(=1.1) [20].

3.4.2 Degree distribution of EXCERBT network

The plot in Fig. 3.9 was derived by hiveQL (2.2.3) for all vertices (424,869 vertices). The
probability distribution of degrees (Fig. 3.9) rendered a similar Vgure to Fig. 3.5. The degree
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3 Network Analysis

exponent γ that we calculated is (Eq. 3.5):

P(dG) ∝ dG
−γ, γ ≈ 1.1

γ = 1.1 signiVes that the hubs play a very signiVcant role in the network and the EXCERBT
network deVnitely is scale-free. In order to deVne whether it even exhibits modularity or
hierarchy, we have to move along on checking the clustering coeXcients.

3.4.3 Clustering coeXcients of EXCERBT network

It took all together approximately 7 hours for the MapReduce steps to calculate the clustering
coeXcients. The Vrst plotting of the average clustering coeXcient against the degrees (Fig.
3.10a) shows almost a straight line similar to random (Fig. 3.4a) and scale-free (Fig. 3.4b)
networks. Since we obtained a slope for the log-log plot of degree distribution (Fig. 3.9) the
possibility of the EXCERBT network being a random one can be eliminated (compare with Fig.
3.3b). Yet we logged the both parameters and plotted them to examine the possibility of any
hierarchy (Fig. 3.10b). But what was rendered is nothing similar to a hierarchical network (Fig.
3.4c). Hence we could not calculate the C(dG) and β from Eq. 3.8.
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(b) Log of average clustering coeXcient of all vertices
with dG edges plotted against the log value of dG .

Figure 3.10: Behavior of the average clustering coeXecient against the respective degree in the EXCERBT
network. The plot on the left exhibits the scale-freeness of the EXCERBT network whereas the plot on the
right cancels the property of any hierarchy.

3.4.4 Degree distribution and clustering coeXcients of Parkinson’s
disease gene network

The computation in MapReduce with the Parkinson’s disease gene network took only 5 minutes
while the JDK (Java Development Kit) on local computer threw a java heap space error. On

28 Syeda Tanzeem H.Charu, 2012



3.4 Results and discussions

receiving the results we Vrst plotted the degree distribution on log-log axes and obtained a
slope like the EXCERBT network. It is shown in Fig. 3.11. Consequently we calculated the γ
and found the following (Eq. 3.5):

P(dG) ∝ dG
−γ, γ ≈ 1.7
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Figure 3.11: Log-log plot of the degree distribution of the Parkinson’s disease gene network computed by
MapReduce framework. The degree exponent γ = 1.7 is represented as the slope of the dashed line.

1.7 is a small value for γ and states a scale-free character of the Parkinson’s disease gene
network. We went further into investigating the architecture. We plotted the C(dG) against
the respective dG. In contrast to the EXCERBT network we found no straight line which
implies that there is very well a dependancy between the two parameters (compare Fig. 3.12a
& Fig. 3.10a) . Therefore we logged the parameters and plotted them again (Fig. 3.12b). This
time we could indentify a clear slope in the plot and found out the relation between C(dG)
and dG (Eq. 3.8):

C(dG) ∝ dG
−β, β ≈ 1.4

Although it was mentioned that the β in hierarchical network should be 1, in this case we
still can argue that β in this network being 1.4 is approximately 1 and it has a hierarchical
architecture. The highest degree found in this network is 2960 while the average lies at 5.95.
Both average and median of clustering coeXcients are approximately 0.7 which signiVes a
well connected network. The entity parkinson disease itself had a comparatively low clustering
coeXcient of 0.1. As already mentioned in the previous chapter (2.1.2) this Parkinson’s disease
gene network is a hairy ball and in this analysis we used the modiVed version of the database
with 14,901 vertices. The entity parkinson disease is the central vertex and has 135 direct
neighbors and these neighbors have 14,766 neighbors. In an average the vertices at a path
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(a) Average clustering coeXcient of all vertices with dG
edges plotted against the dG .
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Figure 3.12: Behavior of the average clustering coeXecient against the respective degree in the Parkinson’s
disease gene network. The plot on the right side indicates a putative hierarchical architecture.

length 1 from parkinson disease has around 109 further connections towards the next depth. So
there really is a sort of modularity in this network.

Now that we have determined the scale-freeness of the EXCERBT and parkinson disease
gene networks and a modularity in the latter we can proceed with further operations that
we want to compute with them. The Vrst step would be to cluster them according to certain
properties which follows in the next chapter. As for the MapReduce algorithm it surely can
be enhanced further in view of runtime. Nevertheless it enabled a modest analysis regarding
degree distribution and clustering coeXcients undoubtedly.
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In this chapter we present an algorithm for local clustering of a massive scale network like
the EXCERBT network. The clustering is strongly local, i.e. global attributes like size or
architecture of the whole network do not have any impact on the clustering. To be able to do
so we have to consider each and every entity in the EXCERBT network as a potential central
vertex of an egocentric network, as many in number as all of the entities. In the following we
give the reader a brief introduction to egocentric networks as well as a concept about how we
intend to perform a local clustering in such networks. Finally we present a potential utilization
of the clustering which could lead to discover new relations between entities.

4.1 An egocentric network

The term Egocentric network is intertwined with the study of social network analysis. Social
network analysis focuses on the measurement of relationships between people. By quantifying
the relationships between people, network analysts can apply models and techniques that are
commonly used across the social and natural sciences1. There are two distinct approaches
to social network analysis, namely - the sociocentric network aprroach and the egocentric
network approach [25][26][27]. The sociocentric (whole) network approach emerged from
sociology and the egocentric (person) approach from anthropology [28]. The latter traces
its roots to A. R. RadcliUe Brown, who is considered as one of the fathers of social network
analysis. An egocentric network describes the relations between individuals rather than groups
and involves the people that a person (referred to as ego) knows. Thus the personal network of
a college student includes parents, grand parents, siblings, cousins, relatives, classmates, book
club members, or just plain friends as entities. But the student may have more family relations
than the head of the faculty who has less time to maintain those relationships.

Similarly enough we can deVne individual egocentric networks within any biological net-
work for each of its vertices. In this work, we considered the neighbors and the neighbors’
neighbors of a vertex as components of such network. We have chosen a path length of only
2 due to the small world phenomena of the networks used here. A path length > 2 would
involve supposedly irrelevant entities to the ego-entity and a path length < 2 would leave out
important information. Only one assignment of an ego-vertex is possible in global or hairy
ball networks. It is quite the case for the Parkinson’s disease gene network we used. Fig. 4.1
represents an egocentric network of the protein YDL190C extracted from the yeast PPI network.

Such a set of networks would facilitate to examine the structure, shape and composition
of one single vertex regardless of the physical property or the content of the whole network.
As a matter of fact, egocentric networks allow the membership of one vertex in several net-

1Taken from the encyclopedia entry on social network analysis by Bureau of Economic and Business Research
http://www.bebr.ufl.edu/files/SNA_Encyclopedia_Entry_0.pdf, September 26, 2012
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4 Egocentric Local Clusterer

Figure 4.1: An egocentric network of the protein YDL190C from the yeast Y2H union network used in this
work.

works. By investigating an ego-vertex in an egocentric network individually we can determine
the types of connections the ego-vertex emits. Thereby we can generalize its features to other
homogenous egocentric networks and detect points of inconsistency among heterogenous
ones as well.

4.2 Local clustering

A local clustering algorithm is one that Vnds a cluster containing or near a given vertex without
looking at the whole graph. The one that we shall be using in this work is a so called friend
Vnder algorithm with weak ties and strong ties. A Vctional friendship network about a few
characters from J.R.R. Tolkien’s Lord of The Rings and J.K. Rowling’s Harry Potter (Fig. 4.2)
explains it in a very simple way. Let us suppose:

1. The two great wizards Dumbledore and Gandalf know each other from graduate school.

2. Being Hobbits from the same village Frodo and Pippin know each other from childhood.

3. Harry met Hermione at Hogwarts and they are best friends.

4. As the headmaster of Hogwarts, Dumbledore knows Harry and Hermione pretty well.

5. Because of his frequent visits to The Shire Gandalf came to know Frodo and Pippin.

6. Frodo met Dumbledore while the latter was visiting The Shire with Gandalf.

7. Hermione met Gandalf during one of his visits to Dumbledore at Hogwarts.

8. Harry, Frodo and Pippin went Vshing together once. Since then Harry is friends with
them.
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4.2 Local clustering

Figure 4.2: Illustration of the idea behind the local clustering algorithm by means of a Vctional character
graph. The black lines represent the relations that already exist, the red dashed ones the strong ties and the
blue dashed ones the weak tie.

These direct relations are shown in Fig. 4.2 by black lines.

The principle of triadic closure states that [29]:

"If two people in a social network have a friend in common, then there is an increased
likelihood that they will become friends themselves at some point in the future".

Now let us notice the following facts:

1. Harry might know Gandalf through Dumbledore, Hermione, Frodo and Pippin.

2. Frodo might know Hermione through Harry, Dumbledore and Gandalf.

3. Pippin might know Dumbledore through Frodo, Harry and Gandalf.

In each of the cases above, two persons who do not have any direct relation yet, might have
one through a number of common friends. Most of these common friends are also friends with
each other. We mark these relations as strong ties and these are sketched as red dashed lines in
Fig. 4.2.

The following case:

1. Pippin might know Hermione only through Harry and Gandalf.

Harry and Gandalf, the common friends of Pippin and Hermione, do not know each other yet.
In this case a weak tie exists between Pippin and Hermione. It is marked as blue dashed line in
Fig. 4.2.

One might speculate, why weak ties too and why not strong ties only? It has already been
observed that people are more likely to acquire jobs that they learned about through individuals
they interact with infrequently rather than their close personal contacts [30]. At this point
we are trying to synchronize theories from sociology into systems biology via social network
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Figure 4.3: The weak ties facilitate information Wow from heterogenous clusters [30]. Taken from Facebook.

analysis. Fig. 4.32 depicts a model of network illustrating strong and weak ties.

In terms of network architecture, both EXCERBT network and any social network are the
same; they are scale-free. Social network is about information Wow from persons to persons.
Constricting the abstract contents, the EXCERBT network also shows a particular information
Wow since it was built up on semantic relations. When an entity is connected with two others
directly, those entities are also likely to interact with one another. It follows that entities
tend to form dense clusters of strong ties which are all connected. These tightly associated
clusters are quite small relative to the whole network. Any information that is available to one
individual entity spreads quickly to others within the cluster. When it comes to information
about future research topics opportunities, it can be hard to Vnd new leads. Weak ties help
spread novel information by bridging the gap between clusters of strong tie contacts. In this
way one can discover new relations among entities without imposing any artiVcial cascade
eUect.

In the following section, we present a friend Vnder algorithm specially for egocentric net-
works. It has a resemblance with the triadic closure principle. A speciVc score is allocated for
each neighbor connection in this algorithm. We have assigned two thresholds for the scores
precisely due to the intention of integrating both strong and weak ties in the network. Finally,
we implemented the algorithm by MapReduce framework and performed it on EXCERBT, yeast
PPI and Parkinson’s disease gene networks.

2Figure taken from the blog
https://www.facebook.com/notes/facebook-data-team/rethinking-information-diversity-in-networks/
10150503499618859, September 26, 2012
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4.3 Methods

4.3 Methods

4.3.1 The "friend Vnder" algorithm

The friend Vnder algorithm here basically works with pairs of direct neighbors of an ego-vertex.
It counts how and how often these neighbors are connected with each other, i.e. whether they
are connected directly or rather indirectly via another vertex except the ego-vertex in their
neighborhood. Then the algorithm groups the pairs according to the strength of their ties [31].

Algorithm 3 Core routine of friend Vnder algorithm: Sequential

function ExpandSeed (u, S):
input: u= the user, S= the seed
returns: F=the friend suggestions
1: G ← GetGroups(u)
2: F ← ∅
3: for each group g ∈ G do
4: for each contact c ∈ g, c /∈ S do
5: if c /∈ F then
6: F[c]← 0
7: end if
8: F[c]←+ UpdateScore(c, S, g)
9: end for
10: end for

Figure 4.4: A directed graph to demonstrate the technique of the egocentric local clustering. Adapted from
[31]

The core routine of the friend Vnder algorithm is explained in the following with the help of a
directed graph (Fig. 4.4):
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1. Create an egocentric network: get neighbors and neighbors’ neighbors for each vertex
of interest.

2. Assign a score of 1 for direct contacts netween two neighbors and a score of 0.25 for
indirect contacts.

3. Update score: for each pair of direct neighbors (green vertices in Fig. 4.4): sum scores
for direct and indirect connections. Scores are given in Tab. 4.1.

4. Normalize the matrix with highest score for each line that corresponds to the neighbor
in the matrix. See Tab. 4.2 below for the normalized scores.

5. DeVne threshold1 for strong ties and threshold2 for weak ties.

6. Combine neighbors to groups according to thresholds.

[Fourier] 2.00 0.25 0.25
2.00 [Dijkstra] 0.25 0.25
0.25 0.25 [Zuse] 1.25
0.25 0.25 1.25 [Bernoulli]

Table 4.1: Sum of scores of direct and indirect connention for direct neighbor pairs.

[Fourier] 1.00 0.125 0.125
1.00 [Dijkstra] 0.125 0.125
0.125 0.125 [Zuse] 0.625
0.125 0.125 0.625 [Bernoulli]

Table 4.2: Normalized scores from the matrix in Tab. 4.1.

Let us deVne threshold1 = 0.6 and threshold2 = 0.2 arbitrarily for the netwrok in Fig. 4.4. Tab.
4.3 shows a classiVcation of neighbor pairs according to the type of ties towards the ego-vertex
Erlenmeyer.

Pairs Fourier Dijkstra Zuse Bernoulli

Fourier - strong weak weak
Dijkstra strong - weak weak
Zuse weak weak - strong
Bernoulli weak weak strong -

Table 4.3: Neighbor pairs classiVed by strong and weak ties in two groups.

It might also happen that a neighbor pair is not directly connected at all. In the example above,
there is no direct connection between the pair 〈Zuse, Fourier〉 nor between 〈Fourier, Dijkstra〉.
But corresponding the ties in Tab. 4.3 there exist a weak tie and a strong tie respectively.
It means their might be very explicit connection between 〈Fourier, Dijkstra〉, but neither of
them would gain any new information by the newely discovered edge. On the other hand the
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newly found edge between 〈Zuse, Fourier〉 implies a weak relation and it might also be that
Zuse and Fourier have very less in common. Nevertheless this connection would enable a vast
information Wow from Fourier to Zuse.

4.3.2 The MapReduce algorithm & its implementation

In this section we show a precise convertion of the sequential algorithm sketched in Code 3
into MapReduce framework. Although the Code 3 applies for directed graphs we have adapted
it for an undirected network for the MapReduce algorithm. Our proposed algorithm works
in three MapReduce steps. It is a novel attempt and its Vrst two steps resemble the Code 2 in
essence. The usual deVnitions already described in the previous chapter (section 3.1) remain
the same, i.e. Γ(v) stands for the neighbor set of the vertex v.

Similar to the clustering coeXcient algorithm for MapReduce framework in the previous
chapter the original input has to be a simple tab seperated table without heading including all
edges amongst the vertices. A sample input is given in Tab. 4.4. Fig. 4.5 represents the tabular
input graphically.

(a) A sample graph to before applying
the MapReduce approach.

(b) Result of the MapReduce approach
after implementing the algorithm.

Figure 4.5: Demonstration of the proposed local clustering on an egocentric network. The blue edges are
the actual connections. The solid red lines on the right graph indicates strong ties which already exist, the
dashed red ones and green ones show strong ties and weak ties which may exist respectively.

Source (v) Target (u)
(key) (value)

A B
A C
A N
B C
B N
C P
P N

Table 4.4: Tabular input of the sample network in Fig. 4.5a to demonstrate the MapReduce algorithm for
friend Vnder. The left column (Source) represents the key and the right one (Target) the values.
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Algorithm 4 Local clustering for (V,E): MapReduce

1: Map 1: Input: 〈(u, v); ∅〉
2: emit 〈u; v〉
3:

4: Reduce 1: Input: 〈v; S ⊆ Γ(v)〉
5: function LexicoSort (l1, l2): . Sort a tuple of letters alphabetically
6: input: b, a
7: returns: a, b
8: for u : u ∈ S do
9: emit 〈LexicoSort(u, v); v〉 . Mark the true edges by the source v
10: end for
11: for (u, w) : u, w ∈ S do
12: emit 〈LexicoSort(u, w); v〉 . Create all possible tuples of neighbors of v
13: end for
14:

15: Map 2: Input: 〈(u, w, v); ∅〉
16: emit 〈(u, w); S ⊆ V ∪ {u} ∪ {w}〉 . List all vertices to which (u, w)
17: . could be possible neighbor pair
18: . including the mark for true edges if any
19:

20: Reduce 2: Input: 〈(u, w); S ⊆ V ∪ {u} ∪ {w}〉
21: if {u ∩ w} ∈ S then
22: for v ∈ S ∩V do
23: emit 〈v; (u, w); 1 + 0.25× (|S ∩V| − 1); true〉 . Assign 1 for true edge
24: . and update score
25: end for
26: else if {u ∩ w} /∈ S then
27: for v ∈ V do
28: emit 〈v; (u, w); 0 + 0.25× (|V| − 1); f alse〉 . Assign 0 for hypothetical edge
29: . and update score
30: end for
31: end if
32:

33: Map 3: Input: 〈v; (u, w); f loat; boolean〉
34: emit 〈v; T ⊆ {(u, w); f loat; boolean}〉
35:

36: Reduce 3: Input: 〈v; T ⊆ {(u, w); f loat; boolean}〉
37: F ← getMax( f loat)
38: for t ∈ T do
39: newFloat← t( f loat)

F
40: end for
41: emit 〈v; (u, w); newFloat; boolean〉 . Output with normalized score
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First mapper

The Vrst mapper lists all the vertices and their respective neighbors (Tab. 4.5).

Source (v) Neighbors (S ⊆ Γ(v))
(key) (value)

A (B, C, N)
B (A, C, N)
C (A, B, P)
P (C, N)
N (A, B, P)

Table 4.5: The temporary output of the Vrst mapper after processing the input from Tab. 4.4.

First reducer

The Vrst reducer accomplishes the following tasks:

1. It creates tuples of edges by combining the source vertex with each of its neighbors,
which are then obviously true edges.

2. Then it creates tuples of vertices from the neighbor set of the source vertex which stand
for possible or hypothetical edges. These might be true edges or not. The reducer does
not know it yet.

3. The elements, i.e. vertices in each tuple are emitted alphabetically. If a combination
creates a 〈z, a〉 edge, the output would be 〈a, z〉.

4. The tuples are assigned as keys and source vertices as values for the next mapper.

The Vrst reducer output is given in Tab. 4.6.

All edges Source All edges Source
(key) (value) (key) (value)

A, B A C, P C
A, C A A, B C
A, N A A, P C
B, C A B, P C
B, N A C, P P
C, N A N, P P
A, B B C, N P
B, C B A, N N
B, N B B, N N
A, C B N, P N
A, N B A, B N
C, N B A, P N
A, C C B, P N
B, C C

Table 4.6: The intermediate output of the Vrst reducer after processing the temporary output of the Vrst
mapper from Tab. 4.5. The lexicographical keys represent all edges including true and hypothetical ones.
The true edges marked for one single source vertex are highlighted red.
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Second mapper

In this step the Map process lists up all the values from the output of the Vrst reducer corre-
sponding to the keys (Tab. 4.7).

Edge (u, w) Sources (v) Edge (u, w) Sources (v)
(key) (value) (key) (value)

A, B (A, B, C, N) B, N (A, B, N)
A, C (A, B, C) B, P (C, N)
A, N (A, B, N) C, N (A, B, P)
A, P (C, N) *C, P (C, P)
B, C (A, B, C) *N, P (P, N)

Table 4.7: The temporary output of the second mapper after processing the Vrst reducer output from Tab.
4.6 The red highlighted vertices in each list indicate that the corresponding key indeed is a true edge.

(key) (value)
Ego-vertex Neighbor pair Direct connection # Indirect connection Score

between neighbor pair between neighbor pair

C A, B true 1: via N 1.25
N A, B true 1: via C 1.25
B A, C true 0 1.0
B A, N true 0 1.0
C A, P false 1: via N 0.25
N A, P false 1: via C 0.25
A B, C true 0 1.0
A B, N true 0 1.0
C B, P false 1: via N 0.25
N B, P false 1: via C 0.25
A C, N false 2: via B & P 0.5
B C, N false 2: via A & P 0.5
P C, N false 2: via A & B 0.5

Table 4.8: The intermediate output of the second reducer after processing the temporary output of the
second mapper from Tab. 4.7. Except the furthest left column which contains the keys, all the other column
entries contribute together as value. The order of the value output can be user deVned.

Second reducer

The second reducer performs the most signiVcant task in the whole procedure. It allocates
scores to the neighbor pairs of the ego-vertices regarding their connections. It is important to
mention here that the lists (values) from Tab. 4.7 contain potential ego-vertices. The technique
is as follows:

1. The reducer scans every list (value) of a neighbor pair (key) for the two contributing
vertices that build up the latter.

2. If step 1 returns true we have a case of true edge, meaning the neighbor pair is already
connected directly (cases highlighted red in Tab. 4.8). In this case the reducer leaves the
two contributing vertices alone and takes each of the other vertices left in the list as an
ego-vertex.
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3. While proceeding step 2, if there are only the two contributing vertices in the list it
would indicate that although the certain pair has a direct connection, they do not have
any indirect connections. Such neighbor pairs are ignored all together. Such cases are
marked with an asterisk in Tab. 4.7.

4. If step 1 returns false we have a hypothetical edge. The neighbor pair is not directly
connected to each other, rather indirectly via every single vertex contained in the list. In
this case the reducer considers every vertex in the list as an ego-vertex.

5. Once detected, an ego-vertex corresponds to a score of 1 or 0 for the neighbor pair,
depending on the case of a true edge or a hypothetical edge respectively.

6. After that the ego-vertex corresponds to a score of 0.25 for the neighbor pair per each
other vertex in the list except the ego-vertex itself.

7. The scores for neighbor pair of each ego-vertex are summed up and the reducer is ready
for the output (Tab. 4.8).

The ego-vertex is the key. Each element of a value includes the neighbor pair, the respective
score as Woat and a boolean value which is true for true edge and false for hypothetical edge.

Third mapper

This mapper brings the values to a key from the output of the third reducer together.

Ego-vertex List of neighbor pairs with scores
(key) (value)

A [((B, C), 1.0, t), ((B, N), 1.0, t), ((C, N), 0.5, f)]
B [((A, C), 1.0, t), ((A, N), 1.0, t), ((C, N), 0.5, f)]
C [((A, B), 1.25, t), ((A, P), 0.25, f), ((B, P), 0.25, f)]
N [((A, B), 1.25, t), ((A, P), 0.25, f), ((B, P), 0.25, t)]
P [((C, N), 0.5, f)]

Table 4.9: The temporary output of the third mapper after processing the second reducer output from Tab.
4.8. t stands for a true edge and f states that there is no connection between the pair.

Third reducer

The last reducer step normalizes the score among the neighbor pairs of each ego-vertex. This
can be done during the third mapping step too. The strength of ties between the neighbor pairs
are determined here. We deVned score ≥ 0.5 as threshold1 and 0.2≥ score < 0.5 as threshold2
for the sample graph in Fig. 4.5a. The Tab. 4.10 shows the grouping of the neighbor pairs
according to the strength oftheir ties..
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Ego-vertex Neighbor pairs Neighbor pairs
with strong tie with weak tie

A ((B, C), 1.0, t) none
((B, N), 1.0, t)
((C, N), 0.5, f)

B ((A, C), 1.0, t) none
((A, N), 1.0, t)
((C, N), 0.5, f)

C ((A, B), 1.0, t) ((A, P), 0.2, f)
((B, P), 0.2, f)

N ((A, B), 1.0, t) ((A, P), 0.2, f)
((B, P), 0.2, f)

P ((C, N), 1.0, f) none

Table 4.10: The Vnal output of the third reducer after processing the temporary output of the third mapper
from Tab. 4.9. The scores are normalized here.

4.3.3 Application of MapReduce algorithm

Y2H network of yeast interactome

The algorithm was Vrst applied to the respectively smaller Y2H union network of yeast
interactome. After creating the local clusters we investigated the interactions of the protein
YDL190C as ego-vertex. We isolated YDL190C from the network Vrst and observed the impact
of the clustering on it. Then we observed it from the point of view of the whole network and
detected the diUerences. We also examined the role of the egocentric networks in the vicinity
of a neighbor pair on its tie strength.

EXCERBT network

We executed the algorithm on EXCERBT network taking only entities with a degree less than
5,000 and there were 341,854 of them. As already described in previous chapter (3.1.2) for
each neighborhood of an ego-vertex (v) with degree dG(v) there exist (

dG(v)
2 ) many possible

triangles. This number also represents the possible number of neighbor pairs. So alone with
5,000 direct neighbors an ego-vertex will have around 12.5 millions tuples to deal with. For
10,000 direct neighbors the number of tuples will go as high as 50 millions. Hence we proceeded
carefully and restricted the degree to 5,000 with a view not to overload the EXCERBT cluster
massively. The program specially written for MapReduce framework works in such a way that
it considers each and every vertex available as an ego-vertex at a time and yet computes in
parallel. We integrated a so called edge tag in the program which appointed the true edges a
"1" and the hypothetical one a "0". Thus we could Vlter out neighbor pairs with a signiVcant
tie score and a potential connection. An extra mapper and reducer were implemented for the
assortment.

Parkinson’s disease gene network

Finally we applied the algorithm on the modiVed version of Parkinson’s disease gene network
consisting of 14,906 vertices and 90,658 edges. We assigned the entity parkinson disease as
the ego-vertex. In order to investigate the result properly we extracted the tie scores between
neighbor pairs for parkinson disease from the result obtained after clustering the EXCERBT
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network. Then we compared the both sets of tie scores to identify any discrepancy. The entity
parkinson disease has 135 direct neighbors and only 9,045 possible neighbor pairs. So it was
visibly a lot easier to deduce any conclusion. We selected one gene from the network and
investigated both its available and putative connections above the thresholds.

4.4 Results and discussions

4.4.1 The threshold problem

We still had to ponder over the perfect thresholds to determine. Many hypotheses can be
produced and many theories remain on how to deVne a meaningful threshold and this is still a
promlem. We tried to deVne our threshold for weak ties as the following [31]:

1. Lower threshold in networks with one neighbor pair with many connections and less
connections between all other pairs.

2. Higher threshold in networks with several highly connected neighbor pairs.

We plotted the tie scores as histogram and deVned the threshold from the score distribution.

4.4.2 Y2H network of yeast interactome

The Vrst try out of the MapReduce friend Vnder algorithm with the Y2H network was very
simple. All vertices in this network could be assigned as the ego-vertex. The highest number
of neighbor pairs is 3,916 and the respective ego-vertex is YLR291C with the highest degree
of 89. We isolated the protein YDL190C from the network with its neighbors and neighbors’
neighbors and found out Vve signiVcant pairs out of 15 (Tab. 4.11). The other 10 pairs had a
score of 0.0 each. The ties are shown in Fig. 4.6. The pairs 〈YDL126C, YFL044C〉 and 〈YDL126C,
YBR170C〉 exist already and have strong ties. Hence the edges between are depicted by solid
red lines. We deVned 0.2 ≥ scores > 0.5 as the weak threshold and scores ≥ 0.5 as the strong
threshold in this case.

Neighbor 1 Neighbor 2 Tie score Tie type

YBL058W YFL044C 1.0 strong
YBL058W YDL126C 0.5 strong
YBR170C YFL044C 0.25 weak
YBR170C YDL126C 1.0 strong
YFL044C YDL126C 1.0 strong

Table 4.11: SigniVcant neighbor pairs for YDL190C.

Let us now consider the ego-vertex YDL190C not in a single egocentric network but as a
member of the whole Y2H network. At this step we are no longer concentrating ourselves on
the ego-vertex itself but on the neighbor groups been suggested for it by our algorithm. The
neighbor pairs suggested for YDL190C can also be suggested for any other ego-vertex. So we
need to observe the imposed eUect of other ego vertices in the vicinity. In this case we examine
how the two neighbor pairs 〈YBR170C, YFL044C〉 and 〈YBL058W, YDL126C〉 suggested for
YDL190C might be aUected by others.
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Figure 4.6: Local clustering after isolating the vertex YDL190C from the original Y2H network. The red
solid lines show already existing edges with strongs ties between neighbors. The dashed red one shows a
possible strong between YDL16C and YBL058W while the blue dashed one a possible weak tie between
YFL044C and YBR170C.

〈YBR170C, YFL044C〉

This neighbor pair was also suggested by YDL126C with a score of 0.2. This protein is a
direct neighbor of YDL190C and belongs to its egocentric network. It has interactions with 6
other proteins and 15 neighbor pairs can be created for it. While considering YDL126C as an
ego-vertex 10 of the neighbor pairs got a score of 0.0. The scores of the other 5 pairs are given
in Tab. 4.12. Consequently we selected 0.2 to be a weak tie.

Neighbor 1 Neighbor 2 Tie score Tie type

YNL155W YFL044C 0.2 weak
YNL155W YDL190C 0.2 weak
YBR170C YFL044C 0.2 weak
YBR170C YDL190C 0.8 strong
YFL044C YDL190C 1.0 strong

Table 4.12: SigniVcant neighbor pairs for YDL126C. The pair under investigation is highlighted blue.

We scanned the output data of the local clustering for evidence. The pair 〈YBR170C, YFL044C〉
was suggested indeed for only YDL190C and YDL126C with a tie score of 0.25 and 0.2 respec-
tively. Therefore we can ascertain that an explicit weak tie exist between this particular pair
(Fig. 4.7).

〈YBL058W, YDL126C〉

Besides YDL190C this pair was suggested for YFL044C and YNL155W. The former is a direct
neighbor of YDL190C and the latter is not. But both of them belong to the egocentric network
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Figure 4.7: Local clustering considering YDL190C within the originial Y2H network. The red solid lines
show already existing edges with strongs ties between neighbors. The dashed red one shows a possible
strong tie and the blue dashed ones a possible weak tie. The multiple ties are to indicate that the particular
neighbor pair was not only suggested for YDL190C but for other ego-vertices (marked in purple rectangles)
also. We found an ambivalent tie between YDL126C and YBL058W.

of YDL190C. The pair 〈YBL058W, YDL126C〉 got a score of 1.0 assigned by YNL155W and a
score of 0.4 by YFL044C. From YDL190C itself it got a score of 0.5. The scores for the egocentric
networks of YFL044C and YNL155W are given in Tab. 4.13.

Now we have a problem since the pair under investigation got ambiguous ties. We could assign
the average score out of 1.0, 0.5 and 0.4, which is 0.63, for 〈YBL058W, YDL126C〉 and argue for
a strong tie. At this point we are speculating an edge which is a common member in a set of
egocentric networks.

Ego-vertex Neighbor 1 Neighbor 2 Tie score Tie type

YFL044C YBL058W YDL190C 0.8 strong
YBL058W YDL126C 0.4 weak
YDL190C YDL126C 1.0 strong

YNL155W YBL058W YDL071C 0.0 null
YBL058W YDL126C 1.0 strong
YDL071C YDL126C 0.0 null

Table 4.13: Neighbor pairs for YFL044C and YNL155W. The pair under investigation is highlighted blue
for YFL044C and red for YNL155W. The entries for YNL155W explain the high score of 1.0. None of its
neighbor pairs are connected with each other directly excpet the one highlighted red. This pair is connected
indirectly through YDL190C (Fig. 4.7).

The normalization of the scores for each ego-vertex causes the main Wuctuation on the thresh-
olds. The scores for the neighbor pairs correspond only to the ego-vertex. As soon as we
change the ego-vertex we have to change our deVnition for the thresholds with respect to it. A
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neighbor pair can get a very low score in one egocentric network if some other pairs in the
same network are assigned a very high score. The same pair can exhibit relatively stronger
ties in other egocentric networks in the vicinity. The main challenge is to Vnd out a suitable
measure out of the diUerent scores for its tie strength. We have taken the average value while
the median can be also taken into account. If a neighbor pair exhibits a signiVcant tie strength
in all the egocentric networks it belongs to we can assume a putative friendship between them.

4.4.3 Suggested neighbor pairs in the EXCERBT network

The MapReduce program for the friend Vnder algorithm had a runtime of exactly 2 hour in case
of the EXCERBT network. It had 341,854 ego-vertex assignments. We could have extended our
restriction of a highest degree of 5,000 very well. The output data was around 180 GB in size
which is in fact enormous comparing to the input data size of 1.5 GB. But these output data
can be processed further and divided into two diUerent Vles according to the tie strength.

We assigned 0.6 as the threshold for strong ties and 0.4 for the weak ones arbitrarily. We had
our third reducer (see 4.3.2) produce two diUerent outputs for the two diUerent tie strengths.
As already mentioned in section 4.3.3 we registered the potential connections only, i.e. pairs
with an edge tag of "0". Due to their membership in multiple egocentric networks they had
multiple scores accordingly. The average score was computed by the additional last reducer
which also had two outputs like its forerunner. The average acores did not Wuctuate much
from the original normalized scores. Because the third reducer already extracted and sorted
the pairs according to the two respective thresholds. Finally the last reducer delivered a list of
the frequency of hypothetical edges for a particular average score.
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(a) Score distribution of the edges within the range of
threshold 1, i.e. between 0.4 and 0.6. 108,984 hy-
pothetical edges and 79,647 true edges were found
within this threshold.
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threshold 2, i.e. between 0.6 and 1.0. 100,951 hy-
pothetical edges and 109,252 true edges were found
within this threshold.

Figure 4.8: Comparison of the local clustering score distribution of tie scores of both true and hypothetical
edges of the EXCERBT network. Note that the y-axis which represents the occurance here is a log axis.
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(a) Log-log plot of the tie scores distribution of parkinson
disease extracted from the EXCERBT network.
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(b) Log-log plot of the tie scores of parkinson disease from
the Parkinson’s disease gene network.

Figure 4.9: Comparison of the probability distribution of tie scores of parkinson disease in two networks.
The scores for the local clustering are plotted on the x-axis and the y-axis states the probability of the
scores.

We plotted this frequency for the two diUerent threshold ranges in Fig. 4.8. The noticable high
altitude for score 1.0 in Fig. 4.8b is quite obvious. This score represents the neighbor pair with
the highest score for one egocentric network and there were 341,854 of them in this case.

We also extracted the ego-vertex parkinson disease from the output of the EXCERBT net-
work and plotted the scores in a log-log plot (Fig. 4.9a). After that we plotted the scores for
the same entity (parkinson disease) from the Parkinson’s disease gene network (Fig. 4.9b) and
compared the scores. No discrepancy could be observed between the two plots so far. In both
cases we obtained exactly 9,045 suggestions for possible edges.

4.4.4 Neighbor pairs for parkinson disease

The execution on our Parkinson’s disease gene network took only 1 minute. The gene NF-
kappaB (as entity nfkappab) had the highest degree of 2,690. As mentioned in section 4.4.1
we determined the two thresholds for the entity parkinson disease from the distribution of
the scores computed for it. A connection score from 0.0 to 0.1 can be regarded as very weak
and there are 6,538 neighbor pairs with such weak connections. For this reason we set the
threshold for weak ties at 0.2 experimentally. On the other hand we found only 13 neigh-
bor pairs with a tie score ranging from 0.6 to 1.0. The number of neighbor pairs increased
rapidly below the score of 0.6. Therefore we chose 0.6 as the threshold for strong ties (Fig. 4.10).

We found 191 neighbor pairs with weak tie between them. 156 of them have direct con-
nections and 35 have indirect connections with each other. As for strong tie, all of the 13
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Figure 4.10: Determining a decent threshold for the neighbor pairs of the entity parkinson disease. The
green margine identiVes the threshold for weak ties and the red one for strong ties.

suggested neighbor pairs are connected directly. We visualized the existing connections, both
weak and strong, for parkinson disease in Fig. 4.11. We investigated further and selected
the gene ERK1/2 (as entity erk12) for the illustration of all of its connections above the two
thresholds. No strong ties with indirect connection could be detected here.

ERK1/2: The term ERK1/2 stands actually for ERK1 and ERK2. ERK ist the abbreviated form
of extracellular signal-regulated kinase. ERK1 and ERK2 are also known as mitogen-activated
protein kinase 3 or for short MAPK3 and MAPK1 respectively. Proteins encoded by these genes
are members of the MAP Kinase family. According to the EXCERBT database it has 872 direct
neighbors including parkinson disease. An example of the connections found between ERK1/2
and parkinson disease in the EXCERBT database is as follows3:

"Degenerating neurons of Parkinson’s disease (PD) patient brains exhibit granules of
phosphorylated extracellular signal-regulated protein kinase 1/2 (ERK1/2) that localize to
autophagocytosed mitochondria."[32]

Fig. 4.12 presents a graphical visualization of the strong and weak ties suggested between erk12
and its tuple partners. In the following we have brieWy discussed 4 pairs with ERK1/2.

ERK1/2 and NF-kappaB

The gene NF-kappaB (nuclear factor kappa-light-chain-enhancer of activated B cells) is a tran-
scription regulator. It plays a key role in the regulation of immune response to infection. The
entity nfkappab has a strong and direct connetion to erk12 (Fig. 4.11). They share 834 common
neighbors which is a high number comparing to 872 direct neighbors of ERK1/2. As such the
strong tie between ERK1/2 and NF-kappaB is justiVed. As for direct connection, we found out
four distinct relation types between them in the EXCERBT database with ERK1/2 as source
and NF-kappaB as target:

3http://mips.helmholtz-muenchen.de/excerbt/#1347487764268, September 26, 2012
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Figure 4.11: Graphical visualization of suggested neighbor groups that already exist for parkinson disease.
The solid green lines stand for weak ties and the red ones for strong ties between existing edges in each
case. The light gray edges indicate the direct connections of the entities to the ego-vertex parkinson disease.

1. at_regulation_act

2. at_regulation_pas

3. at_activation_act

4. at_inhibition_pas

Semantically ERK1/2 is involved in activation of NF-kappaB and NF-kappaB is involved in
inhibition of ERK1/2. Both are summarized as active and passive regulation between each
other.

ERK1/2 and cytochrome c

Cytochrome c is a small heme protein that functions as a central component of the electron
transport chain in mitochondria. It is also involved in the process of initating apoptosis.
Numerous processed pseudogenes of this gene are found throughout the human genome4.

4http://www.ncbi.nlm.nih.gov/gene/54205, September 26, 2012
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The gene that encodes this protein is CYCS and is entered as a synonym to cytochrome c
in the EXCERBT synonym database. Hence the query for only genes as target type for our
Parkinson’s disease gene network included cytochrome c. It shares 313 common neighbors
with ERK1/2 which explains the weak tie with respect to NF-kappaB.

Figure 4.12: Graphical visualization of existing and non existing edges between neighbor pairs of parkinson
disease containing erk12. The green lines stand for weak ties and the red ones for strong ties. On an addition
the solid lines show the existing edges whereas the dashed ones the non existing ones. The light gray edges
indicate the direct connections of the entities to the ego-vertex parkinson disease. The black dashed line is
to point out the entity dj1 with which erk12 has no signiVcant tie. We have taken the entities in the ellipses
as examles to investigate.

We found 2 direct relations between them, namely:

1. regulation_act

2. inhibition_act

Semantically ERK1/2 is related to the process of cytochrome c inhibition and thus its regulation
too.

ERK1/2 and ubiquitin

Ubiquitin is a small regulatory protein found ubiquitously in almost all tissues of eukaryotic
organisms. In mammals it is encoded by 4 diUerent genes. The process of marking a protein
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with ubiquitin is called ubiquitination. It is known to play central roles in the regulation of
various cellular processes such as protein degradation, protein traXcking, cell cycle regulation,
DNA repair, apoptosis and signal tranduction [33]. The query for target tape gene hit ubiquitin
probably because the term ubiquitin was registered semantically as the super group for
ubiquitin genes. We could found not a single direct reletion between ERK1/2 and ubiqutin in
the EXCERBT database (hence the dashed green line in Fig. 4.12). But they have 304 common
neighbors which indicates a weak tie. We went deeper and found NF-kappaB as a common
neighbor. Ubiquitin is related to NF-kappaB regarding activation, inhibiton and regulation. So
if both ubiquitin and ERK1/2 are involved in the regulatory process of NF-kappaB there must
be some sort of relation between them.

ERK1/2 and DJ-1

DJ-1 is also known as the PARK7 gene which encodes the PARK7 protein in humans. Defects
in this gene result into the autosomal recessive early-onset arkinson disease 75. We found two
direct relations between ERK1/2 and DJ-1 which state that the latter is involved in activation
and regulation of the former. They share only 62 neighbors with each other. Consequently the
tie strength between them was beyond any of the two thresholds used in this work.

This was simply a novel attempt to cluster a massive-scale network locally with an ego-
centric concept. Obviously there are scopes to improve it. The Vrst and foremost challenge
in this work was deVning legitimate thresholds which still remains. In all attempts related
to the egocentric local clustering we selected some arbitrary scores as thresholds. Then we
reVned our deVnition of thresholds empirically. We recommend a further inspection between
the scores alloted to the vertices contained in a neighbor pair and their clustering coeXcients.

Another aspect to explore could be to change the type of vertices chosen as neighbors’ neigh-
bors. For example, one chooses metabolites as target type for the genes which are directly
connected to a phenotype say parkinson disease.

The hypothetical edges found in the egocentric network of Parkinson’s disease gene should be
examined from other egocentric networks’ point of view. By means of the methods presented
in this chapter we found out numerous hypothetical edges above the tie strength thresholds
(Fig. 4.8). Neighbor pairs with such hypothetical edges should be investigated further. It points
out the fact that an evidence of publication regarding them is not available yet (see 4.4.4). Pairs
with a strong tie ought be connected in reality since they belong to the same cluster. They
share the same information and must have publications accordingly. If not then it is essential
to start researching about them. This realization can open a broad horizon for scientists and
researchers.

5http://www.ncbi.nlm.nih.gov/gene/11315, September 26, 2012
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5 Biomedical Synonym Resolution

According to the deVnition of the Oxford dictionary a synonym is a word or phrase that means
exactly or nearly the same as another word or phrase in the same language. The state of
being a synonym is deVned as synonymy. In the context of biomedical literatures it is one
of the most important relations found between diUerent terminologies [34]. The language of
biomedical texts like all natural languages has a complex structure and creates the synonym
problem. It is crucially important to take synonymy into account in order to build high
quality text mining systems for biomedical literatures. In this chapter we oUer a proposition to
resolve the synonym problem by applying our egocentric local clustering method introduced
in the previous chapter. This attempt does not involve any text mining, it clusters rather the
synonymous terms resulting from the text mining and groups them together.

5.1 The EXCERBT network: a biomedical thesaurus

The number of publications that were analyzed by the tool EXCERBT lies around 21.8 millions.
The synonymous terms found among them are listed in an enormous synonym database. Alone
544 synonyms can be found for aspirin1. Unfortunately these synonyms are not registered
under one key name or ID and hence one can Vnd 127 synonyms for the term Aspirin2. These
two sets of synonyms are also very redundant and the redundancy continues for each of the
elements in one set3. We experimented with the Parkinson’s disease gene network as a strategy
approach towards the solution. Our basic concept was to build up tuples of synonyms and
observe the local clustering scores assigned to them by means of the egocentric local clustering
algorithm (4). One cannot ignore special characters or spelling of a term when it comes to
synonyms. Therefore we used the raw version of the Parkinson’s disease gene network that
we extracted from the EXCERBT network for this experiment (see 2.1.2).

5.2 Method

The following steps were performed for the experiment to detect synonyms:

1. We Vrst clustered the original Parkinson’s disease gene network with the help of the
program for egocentric local clustering.

2. Next we determined the thresholds for strong ties and weak ties from the local clustering
scores (Fig. 5.1).

1http://mips.helmholtz-muenchen.de/excerbt/rest/entities/synonyms/aspirin, September 26,
2012

2http://mips.helmholtz-muenchen.de/excerbt/rest/entities/synonyms/Aspirin, September 26,
2012

3http://mips.helmholtz-muenchen.de/excerbt/rest/entities/synonyms/Toldex, September 26,
2012
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Figure 5.1: DeVning the threshold for the neighbor pairs of the entity parkinson disease. The green margine
identiVes the threshold for weak ties and the red one for strong ties.

3. Then we scanned all of the suggested neighbor pairs for synonymy. We set the case
"synonymy is true" for a pair 〈A, B〉 if at least one of the following applies:
a) Symmetry: If A ≡ B. Automatically B ≡ A.

b) Transitivity: In case symmetry does not apply, then for an element x ∈ synonym
set of A, i.e. x ≡ A, if x ≡ B then A ≡ B.

4. We observed the behavior of the scores of the synonym pairs found against that of all
other neighbor pairs, followed by grouping of the synonyms. We grouped the synonyms
so that we could perform further tests with one group.

5. After that we executed our clustering program once again on the raw Parkinson’s disease
gene network. But this time we considered only members of one synonym group and
their neighbors for the egocentric network of parkinson disease.

6. Subsequently we plotted the local clustering scores of the synonyms once again and
interpreted the tie strength between a pair.

5.3 Result

The procedure listed in the previous section delivered the following result:

1. The clustering of the de facto Parkinson’s disease gene network showed that the entities
parkinson disease and Parkinson disease had exactly the same 142 neighbors and conse-
quently exactly the same 10,011 pairs of neighbors were suggested. So we carried on
with only one entity as the ego vertex, namely parkinson disease.

2. After the clustering we plotted the local clustering scores in a histogram (Fig. 5.1). We
took 0.2 as the threshold for weak ties as in the previous chapter (see 4.4.4) but tuned the
threshold for strong ties down to 0.4. We found 16 pairs with strong ties which also exist
in reality. No hypothetical strong edges were found.
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5.3 Result

3. We found only 68 synonym pairs out of the 10,011 possible edges. 5 pairs were no true
synonyms rather simply the same word with slightly diUerent spelling (Tab. 5.1).

Neighbor 1 Neighbor 2

P300 p300
4E-BP 4EBP
DJ-1 DJ1

UCH-L1 UCHL1
COX-2 COX2

Table 5.1: The Vve non true synonym pairs found in the original Parkinson’s disease gene network.

4. The scores for the other 63 true synonym pairs were extremely low ranging from 0.01
to 0.07 (Fig. 5.2). We detected two groups of synonyms here. One group contained the
entities ACTH, PPN, MPTP and MEG with 13 pairs. The other group contained genes
related to the cytochrome p450 super family with 50 pairs. This group consisted of 11
genes. So theoretically there should be (11

2 ) = 55 pairs. Since our scanning program
searched for synonyms only it found 50 pairs containing synonymous terms. It is quite
possible that the two contributing genes in the other 5 putative pairs were not registered
as synonyms in the EXCERBT synonym database.
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Figure 5.2: Illustration of the local clustering scores resulting for synonyms after the clustering of the raw
version of Parkinson’s disease gene network. We have taken the range for the x-axis from 0.00 to 0.10
instead of 1.0 since the scores of the 63 true synonym pairs range from 0.01 to 0.07.

5. We chose to continue the experiment with the synonyms of the cytochrome p450 super
family. We eliminated all other vertices and their neighbors except the synonymous
vertices and their neighbors from the original Parkinson’s disease gene network.
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Figure 5.3: Determining the threshold for neighbor pairs of synonymous vertices of the gene cytochrome
p450 super family. The green margine identiVes the threshold for weak ties and the red one for strong ties.

Figure 5.4: Graphical visualization of the synonym clusters of cytochrome p450. The red vertex in the middle
is the entity parkinson disease and the dark green vertices are the 11 synonymous genes of cytochrome p450.
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5.4 Discussion

6. Finally we plotted the local clustering scores of the synonym pairs as a histogram (Fig.
5.3). We selected 0.23 as the threshold for weak ties and 0.36 for strong ties. We visualized
these pairs as a subnetwork of the original Parkinson’s disease gene network in Figs. 5.4
and 5.5.

Figure 5.5: Graphical visualization of the pairs containing synonymous genes of cytochrome p450. The red
lines represent strong ties, the green ones weak ties and the yellow ones all other ties beyond the thresholds.
The only two orange dashed lines show the two pairs which are not connected directly. Their scores are
also below both thresholds.

5.4 Discussion

The intention of eliminating the nonsynonymous vertices was to exclude the inWuence of
neighbor pairs with higher number of indirect connections from the egocentric network. Say
the vertices A and B have 100 and 200 direct neighbors respectively but share 50 common
neighbors. On the other hand the synonym pairs X and Y in the same egocentric network have
10 direct neighbors each and share all of them. The egocentric local clustering algorithm would
assign the former a higher score than the latter and thus the score normalization would deliver
a minute score for the synonym pair. Since we were trying to Vnd out possible synonym
candidates we had to exclude the nonsynonym ones for this experiment.

Out of the 55 possible neighbor tuples 17 were detected to exhibit strong ties and 21 weak ties.
The rest had a score beyond the two thresholds. Two of them were not connected directly. So
we might assume the two contributing vertices of any member tuple showing a strong tie to be
synonyms. Considering the fact that the synonym tuples were under investigation from the
point of view of only one egocentric network the result is neither informative nor convincing.
At this point the procedure needs strategic and technical reVnement.
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Figure 5.6: Proposition how to choose the vertices for the network with the synonyms. The level I vertices
(red and blue sets) should form the egocentric networks. The set of synonym vertices would be then within
the respective ranges (red and blue arrows) for the set of egocentric networks. After determining the scores
for the synonym pairs a vertex (purple), of which the synonymy is unknown, is to be added along with its
neighbor sets up to depth 3 to the test set.

5.5 Proposition

Under the circumstances we propose the following two improvements regarding the experiment
to tackle the challenge of Vnding synonyms:

Strategic approach

We have observed the synonym pairs within one egocentric network. We need to investigate
the pairs from other egocentric networks in the vicinity as well. To be able to do that we need
to revise the formation of the main network. One takes the synonymous terms and includes all
vertices within the range of depth 3 into the network. The vertices at level 1 are to be marked
as the ego-vertices which form the set of egocentric networks (Fig. 5.6). This strategy would
allow the membership of the synonym pairs in multiple egocentric networks. Other pairs
from level 2 (yellow sets in Fig. 5.6) which do not include any synonyms and cross pairs of
synonyms and non synonyms are ignored. Then the scores for one synonym pair assigned by
the multiple ego-vertices should be averaged. DeVning a threshold at this point does not make
that much of sense since we know that all of these pairs are synonyms beforehand. But the
score range is important.

Technical approach

Another reVnement would be to develop a more accurate scoring function. Until now we have
assigned "1" for a direct connection and "0.25" for an indirect connection between pairs. As
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5.5 Proposition

already explained in the previous section (see 5.4) this scoring approach for indirect connec-
tions turns out to be naive if it comes to the synonyms. A new concept would be to allow
scores depending on the percentage of common neighbors between the contributing vertices
in a pair. One sums up the numbers of direct neighbors of each vertex in a pair, then counts
the number of their common neighbors and Vnally determines the percentage of the common
neighbor out of all neighbors. A score of "0.1" should be alotted for each percent. Let 〈a, b〉 be
a synonym pair and A and B be their respective neighbor sets. Then the score S for the indirect
connections between 〈a, b〉 would be the following:

S =
|A ∩ B|
|A ∪ B| × 100× 0.1 (5.1)

If a ∈ B or b ∈ A then there is a direct connection and the score should be "1" in this case. In
this way if the pair shares 100% of their neighbors they would get a score of "10" and for a
direct connection "1".

After all these procedures are accomplished one adds a new vertex with its neighbors up
to depth 3 in this network. The vertex itself is added to the set of synonym vertices. The
clustering is performed again. The new pairs with the newly added are examined and the
scores are compared to the original scores of the synonym pairs determined previously. Only
after that one can postulate whether the new vertex could be a synonym or not.

It should be clear to the reader that the egocentric local clustering algorithm would detect
possible synonym candidates and cluster them with the existing synonyms in the EXCERBT
synonym database. This algorithm does not guarantee a 100% discovery of synonyms. Even if
we consider the inclusion of a putative synonym candidate upon a strong tie it is still possible
that a synonym candidate without any synonymy might fulVll the requirement by chance. Yet
it can be apprehended that this egocentric local clustering would detect most of the synonyms
and cluster them with the respective groups. Therefore it is not farfetched at all to experiment
with our proposition introduced above.
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6 Conclusion & Outlook

The number of biomedical articles is growing exponentially and is yet to grow in time to
come. It is and will remain too large a consortium for an individual to read and interpret
all in a practicable time. Automated text mining systems are hence a must for the conver-
sion of this amount of information into knowledge which also makes the implementation
of networks inevitable. Today we are almost overstrained in dealing with data at terabyte
and petabyte scales. Due to the exponential growth of biomedical literature that day is not
so far when we will be compelled to tackle data at zettabyte (1021) or even yottabyte (1024) level.

In this work we have integrated MapReduce framework to cope up with this massiveness. But
even MapReduce is no panacea if handled carelessly [11]. Designing the algorithms remains
crucial to success of the algorithms. Space requirements of algorithms do not disappear simply
because there are more machines available. For a large enough n, say n ≈ 108, an O(n2)
memory is still an unreasonable request which would require approximately 10 petabytes
of storage. Therefore the programmer has to mind the facts about machine memory, total
memory and number of each MapReduce round. Almost in the end of our work we Vgured
out the implementation of an even better designing for the MapReduce algorithm to com-
pute clustering coeXcients (2). This design would decrease the runtime and storage problem
to a large extent. Since it would go beyond the span of a bachelor thesis we did not carry
the design into eUect. But we would strongly recommend an implementation of the new design.

We detected an unambiguous scale-freeness in the EXCERBT network proving once again that
most biological networks are such, even when it comes to networks derived from biomedical
publications. Concerning the EXCERBT network itself one can also consider the assignments
of direction and weight into it. The reVnement of the algorithm design would make it possible
to include complexities like directed and weighted edges. The diUerent relation types between
entities in the EXCERBT network can be considered as unit for weight while the speciVcations
"_act" and "_pas" can be applied as directions. Say, two entities show the following types of
relations between them:

1. activation_act

2. inhibition_pas

3. regulation_act

4. regulation_pas

5. expression_act

The Vrst four terms should be added up together since activation and inhibition are comprised
in regulation and there ought to be a bidirectional relation assigned to the entities. Furthermore
there should be a weight of 2 units between them due to the extra factor expression.

As for the egocentric local clustering algorithm there is also room for improvement regarding

Syeda Tanzeem H.Charu, 2012 61
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runtime, storage and above all the designing. We have already established the basic concept for
a search engine to Vnd possible new relations between entities. We discovered quite a few of
such relations and presented the example of the weak tie found between ERK1/2 and ubiquitin
(see 4.4.4). We have taken only related entities of type gene for Parkinson’s disease. It was
necessary since one cannot step directly into a complicated level while experimenting with a
novel attempt. Creating multiple catagories in the EXCERBT network according to the entity
types can be the next criteria for the clustering. The concept is to create parallel networks
within the original network. The entities in the EXCERBT network exhibit multiple natures
referring to their types like gene, protein, metabolite etc. As for example the entity ERK1 is
connected to ARIA which can be reUered to as gene and metabolite alike. In this work we
assigned scores to a neighbor tuple in an egocentric network counting simply the number of
connections between them, i.e. if the tuple 〈A, B〉 has a common neighbor C then we assigned
a score of 0.25 to the tuple (see 4.3.2). Say both A and B belong to the gene and the metabolite
networks. If C belongs to only one of the two parallel networks then the tuple 〈A, B〉 would
gain a higher score than the case if C belonged to only one of the two parallel networks. Such
quantiVcation can lead to a better qualiVcation of the tie strength. More concretely, adding this
aspect would Vnd out putative connections based on the contribution of the dispersed edges in
the multiple networks. But the number of the multiple networks must be limited in order to
avoid a possible exponentiality.

The other demanding prospect was the score calculation and the threshold determination. We
believe that the proposition regarding the score calculation mentioned in previous chapter
oUers an eXcient solution to the problem (see 5.5). Regarding the synonyms we detected a
tendency amongst them of being in the same cluster of the superfamily or group. Hence we sug-
gested that a synonym candidate would also tend to belong to the respective cluster upon a true
synonymy. There are at least half a dozen of text mining approaches to detect synonyms alone.
Identifying synonyms after the automation is not at all mundane. This experiment is still at its
primitive level but we expect an aXrmative result upon the accomplishment of our proposition.

Summing up the whole thesis, the attempt to analyze the EXCERBT network was successful.
We could caculated the degrees for all of the entities with the help of HiveQL and the clustering
coeXcients for entities with a degree of ≤10,000 by our MapReduce algorithm. The local
clustering attempt was also successful though it did not go smoothly all along. Nevertheless we
could cluster entities locally with a degree of ≤5,000 by creating 341,854 egocentric networks.
We detected 108,984 and 100,951 hypothetical edges with weak and strong ties respectively.
In case of Parkinson’s disease we could identify 191 edges with weak tie and 13 with strong
tie. All of the edges with strong tie exist in reality. 35 out of the 191 edges with weak tie were
hypothetical and need to be investigated further. Although we clustered the synonyms within
the Parkinson’s disease network, we could not achieve any eUective or convincing result to
distinguish synonyms perfectly. But this led us into a promising proposition for the synonym
resolution in turn.

Bioinformatics makes extensive use of information theoretic measures as part of the attempt
to use expert computational data analysis tools on biological problems. Bioinformaticians
are trained to have the skill and ability to identify patterns and correlations among the data.
With this explosion of data has come the opportunity to develop an evermore enigmatic
understanding of the way organisms function at their most fundamental levels. Genes are
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being identiVed that are involved in basic human experiences. Genes and gene regulatory
mechanisms are being rapidly identiVed that underlie many of the most dreaded diseases
including cancer, heart disease and the degenerative neurological diseases of aging [35]. All
of this information can easily sway our focus from the Velds that have not been researched
yet. Our entire work was based upon a network derived from biomedical publications. Upon
a Wawless implementation of our local clustering algorithm we provide the researcher and
scientist community with a tool to enable new discoveries.
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