Skip to content
Official pytorch Implementation of Hyperpixel Flow, ICCV 2019
Python
Branch: master
Clone or download
Latest commit 0f41df5 Oct 16, 2019
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
data initial commit Sep 24, 2019
model initial commit Sep 24, 2019
README.md Update README.md Oct 16, 2019
beamsearch.py logging bugfix Sep 25, 2019
evaluate.py initial commit Sep 24, 2019

README.md

Hyperpixel Flow:
Semantic Correspondence with Multi-layer Neural Features

This is the implementation of the paper "Hyperpixel Flow: Semantic Correspondence with Multi-layer Neural Features" by J. Min, J. Lee, J. Ponce and M. Cho. Implemented on Python 3.6 and Pytorch 1.0.1.

For more information, check out project [website] and the paper on [arXiv].

Conda environment settings

conda create -n hpf python=3.6
conda activate hpf

cat /usr/local/cuda/version.txt
conda install pytorch=1.0.1 torchvision cudatoolkit=10.0 -c pytorch (if CUDA 10) 
conda install pytorch=1.0.1 torchvision cudatoolkit=9.0 -c pytorch (if CUDA 9) 

conda install -c anaconda scikit-image
conda install -c anaconda pandas
conda install -c anaconda requests
pip install gluoncv-torch

Reproduction

Beam search on SPair-71k validation set:

python beamsearch.py --dataset spair --thres bbox --backbone resnet50
python beamsearch.py --dataset spair --thres bbox --backbone resnet101

Beam search on PF-PASCAL validation set:

python beamsearch.py --dataset pfpascal --thres bbox --backbone resnet50
python beamsearch.py --dataset pfpascal --thres bbox --backbone resnet101  

Results on PF-PASCAL: (PCK: 83.4%, 84.8%, 88.3%)

python evaluate.py --dataset pfpascal --backbone resnet50 --hyperpixel '(2,7,11,12,13)'
python evaluate.py --dataset pfpascal --backbone resnet101 --hyperpixel '(2,17,21,22,25,26,28)'
python evaluate.py --dataset pfpascal --backbone fcn101 --hyperpixel '(2,4,5,18,19,20,24,32)'

Results on PF-WILLOW: (PCK: 74.4%)

python evaluate.py --dataset pfwillow --backbone resnet101 --hyperpixel '(2,17,21,22,25,26,28)'

Results on Caltech-101: (LT-ACC: 0.88, IoU: 0.64)

python evaluate.py --dataset caltech --backbone resnet50 --hyperpixel '(2,7,11,12,13)'

Results on SPair-71k: (PCK: 27.2%, 28.2%)

python evaluate.py --dataset spair --backbone resnet50 --hyperpixel '(0,9,10,11,12,13)'
python evaluate.py --dataset spair --backbone resnet101 --hyperpixel '(0,8,20,21,26,28,29,30)'

Bibtex

If you use this code and SPair-71k dataset for your research, please consider citing:

@InProceedings{min2019hyperpixel, 
   title={Hyperpixel Flow: Semantic Correspondence with Multi-layer Neural Features},
   author={Juhong Min and Jongmin Lee and Jean Ponce and Minsu Cho},
   booktitle={ICCV},
   year={2019}
}
@article{min2019spair,
   title={SPair-71k: A Large-scale Benchmark for Semantic Correspondence},
   author={Juhong Min and Jongmin Lee and Jean Ponce and Minsu Cho},
   journal={arXiv prepreint arXiv:1908.10543},
   year={2019}
}
You can’t perform that action at this time.