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Why you should care about relational algebra
Why should you care? 

• It is old 
• It is as useful as ever 
• Exposed in new products such as Hadoop 
• New challenges 

Agenda 
• Is Hadoop a revolution for the database world? 
• What is relational algebra? 
• Examples of algebra in action 
• Introducing Apache Calcite 
• Adding data independence to Hadoop via materialized views
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Hadoop

Old world, new world

RDBMS

• Security 
• Metadata 
• SQL 
• Query planning 
• Data independence

• Scale 
• Late schema 
• Choice of front-end  
• Choice of engines 
• Workload: batch, interactive, 

streaming, ML, graph, …
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Many front ends, many engines

SQL

Planning

Execution  
engine

Planning

User code

Map  
Reduce Tez User code 

in Yarn
Spark MongoDB

Hadoop

External  
SQL

SQL Spark Storm Cascading HBase Graph
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Analogy: LLVM

Lessons from the compiler  
community: 
• Writing a front end is hard 
• Writing a back end is hard 
• Writing an optimizer is really hard 
• Most of the logic in the optimizer is independent of 

front end and back end 
• E.g. register assignment 

• The optimizer is a collection of separate algorithms 
• Common language between algorithms 



© Hortonworks Inc. 2015

Relational algebra
SELECT d.name, COUNT(*) AS c 
FROM Emps AS e 
  JOIN Depts AS d ON e.deptno = d.deptno 
WHERE e.age < 30 
GROUP BY d.deptno 
HAVING COUNT(*) > 5 
ORDER BY c DESC

Scan [Emps] Scan [Depts]

Join [e.deptno 
  = d.deptno]

Filter [e.age < 30]

Aggregate [deptno, COUNT(*) AS c]

Filter [c > 5]

Project [name, c]

Sort [c DESC]

(Column names are simplified. They would usually 
be ordinals, e.g. $0 is the first column of the left input.)
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Relational algebra - Union and sub-query
SELECT * FROM (  
  SELECT zipcode, state  
  FROM Emps  
  UNION ALL  
  SELECT zipcode, state  
  FROM Customers) 
WHERE state IN (‘CA’, ‘TX’)

Scan [Emps] Scan [Customers]

Union [all]

Project [zipcode, state] Project [zipcode, state]

Filter [state IN (‘CA’, ‘TX’)]
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Relational algebra - Insert and Values
INSERT INTO Facts  
VALUES (‘Meaning of life’, 42),  
  (‘Clever as clever’, 6) 

Insert [Facts]

Values [[‘Meaning of life’, 42], 
  [‘Clever as clever’, 6]]
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Relational algebra - Strict versus Pragmatic
“Strict” relational algebra 
Introduced by E.F. Codd in “A relational 

model for large shared data banks” [1970]  
Goal is mathematical elegance (ability to 

prove theorems) 
Greek symbols: σ, π, ρ, U,  
Relations cannot contain duplicates 
Relations are not sorted 
Column values are scalars 
Only logical operators

Pragmatic relational algebra 
Goal is to optimize queries, allow real-

world data models, extensibility 
Elegance still important 
Verbs: Project, Filter, Union, Join 
Relations may contain duplicates 
Relations may be sorted 

• But Sort is the only logical operator 
that guarantees order 

Null values have 3-value semantics, as in 
SQL 

Physical operators (e.g. HashJoin, 
MergeJoin) 

Physical properties (sort, distribution)
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Algebraic transformations
(R filter c1) filter c2  →  R filter (c1 and c2) 

(R1 union R2) join R3 on c  →  (R1 join R3 on C) union (R2 join R3 on c) 

• Compare distributive law of arithmetic:  (x + y) * z  →  (x * z) + (y * z) 

(R1 join R2 on c) filter c2  →  (R1 filter c2) join R2 on c     

(R1 join R2 on c) → (R2 join R2 on c) project [R1.*, R2.*] 

(R1 join R2 on c) join R3 on c2  →  R1 join (R2 join R3 on c2) on c 

Many, many others… 

(provided C2 only depends on 
columns in E, and join is inner)

(provided c, c2 have the 
necessary columns)
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Query using a view
SELECT deptno, min(salary)  
FROM Managers  
WHERE age >= 50  
GROUP BY deptno  

CREATE VIEW Managers AS 
SELECT *  
FROM Emps  
WHERE EXISTS (  
  SELECT *  
  FROM Emps AS underling  
  WHERE underling.manager = emp.id) Scan [Emps]

Join [$0, $5]

Project [$0, $1, $2, $3]

Filter [age >= 50]

Aggregate [deptno, min(salary)]

Scan [Managers]

Aggregate [manager]

Scan [Emps]
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After view expansion
SELECT deptno, min(salary)  
FROM Managers  
WHERE age >= 50  
GROUP BY deptno  

CREATE VIEW Managers AS 
SELECT *  
FROM Emps  
WHERE EXISTS (  
  SELECT *  
  FROM Emps AS underling  
  WHERE underling.manager = emp.id)

Scan [Emps] Aggregate [manager]

Join [$0, $5]

Project [$0, $1, $2, $3]

Filter [age >= 50]

Aggregate [deptno, min(salary)]

Scan [Emps]
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After pushing down filter
SELECT deptno, min(salary)  
FROM Managers  
WHERE age >= 50  
GROUP BY deptno  

CREATE VIEW Managers AS 
SELECT *  
FROM Emps  
WHERE EXISTS (  
  SELECT *  
  FROM Emps AS underling  
  WHERE underling.manager = emp.id)

Scan [Emps]

Scan [Emps]

Join [$0, $5]

Project [$0, $1, $2, $3]

Filter [age >= 50]

Aggregate [deptno, min(salary)]
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Materialized view
CREATE MATERIALIZED VIEW EmpSummary AS  
SELECT deptno,  
  gender,  
  COUNT(*) AS c, 
  SUM(sal) AS s  
FROM Emps  
GROUP BY deptno, gender 

SELECT COUNT(*)  
FROM Emps  
WHERE deptno = 10  
AND gender = ‘M’

Scan [Emps]

Aggregate [deptno, gender, 
     COUNT(*), SUM(sal)]Scan [EmpSummary] =

Scan [Emps]

Filter [deptno = 10 AND gender = ‘M’]

Aggregate [COUNT(*)]
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Materialized view, step 2: Rewrite query to match
CREATE MATERIALIZED VIEW EmpSummary AS  
SELECT deptno,  
  gender,  
  COUNT(*) AS c, 
  SUM(sal) AS s  
FROM Emps  
GROUP BY deptno, gender 

SELECT COUNT(*)  
FROM Emps  
WHERE deptno = 10  
AND gender = ‘M’

Scan [Emps]

Aggregate [deptno, gender, 
     COUNT(*), SUM(sal)]Scan [EmpSummary] =

Scan [Emps]

Filter [deptno = 10 AND gender = ‘M’]

Aggregate [deptno, gender, 
     COUNT(*) AS c, SUM(sal) AS s]

Project [c]
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Materialized view, step 3: Substitute table
CREATE MATERIALIZED VIEW EmpSummary AS  
SELECT deptno,  
  gender,  
  COUNT(*) AS c, 
  SUM(sal) AS s  
FROM Emps  
GROUP BY deptno, gender 

SELECT COUNT(*)  
FROM Emps  
WHERE deptno = 10  
AND gender = ‘M’

Scan [Emps]

Aggregate [deptno, gender, 
     COUNT(*), SUM(sal)]Scan [EmpSummary] =

Filter [deptno = 10 AND gender = ‘M’]

Project [c]

Scan [EmpSummary]
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Streaming
SELECT STREAM DISTINCT productName, 
  floor(rowtime TO HOUR) AS h  
FROM Orders 

Delta 
Converts a table to a stream 
Each time a row is inserted into the table, a 
record appears in the stream 

Chi 
Converts a stream into a table 
Often we can safely narrow the table down to a 
small time window

Chi

Aggregate [productName, h]

Scan [Orders]

Project [productName, 
    floor(rowtime TO HOUR) AS h]

Delta
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Streaming - efficient implementation
SELECT STREAM DISTINCT productName, 
  floor(rowtime TO HOUR) AS h  
FROM Orders 

Can create efficient implementation: 
• Input is sorted by timestamp 
• Only need to aggregate an hour at a time 
• Output timestamp tracks input timestamp 
• Therefore it is safe to cancel out the Chi 

and Delta operators  

StreamingAggregate [productName, h]

Scan [Orders]

Project [productName, 
    floor(rowtime TO HOUR) AS h]
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Algebraic transformations - streaming
delta(filter(c, R)) → filter(delta(c, R)) 

delta(project(e1, …, en, R) → project(delta(e1, …, en, R)) 

delta(union(R1, R2)) → union(delta(R1), delta(R2)) 

delta(join(R1, R2, c)) → union(join(R1, delta(R2), c),  
                                                   join(delta(R1), R2), c) 

Delta behaves like “differentiate” in differential calculus, 
Chi like “integrate”. 

(f + g)’ = f’ + g’

(f . g)’ = f.g’ + f’.g
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Apache Calcite
Apache 
Calcite
Apache 
Calcite
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Apache Calcite

Apache incubator project since May, 2014 
• Originally named Optiq 

Query planning framework 
• Relational algebra, rewrite rules, cost model 
• Extensible 
Packaging 
• Library (JDBC server optional) 
• Open source 
• Community-authored rules, adapters 

Adoption 
• Embedded: Lingual (SQL interface to Cascading), Apache Drill, Apache Hive, Kylin OLAP, 

Apache Phoenix, Apache Samza 
• Adapters: Splunk, Spark, MongoDB, JDBC, CSV, JSON, Web tables, In-memory data



© Hortonworks Inc. 2015

Conventional DB architecture
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Calcite architecture
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Calcite – APIs and SPIs

Cost, statistics
RelOptCost 
RelOptCostFactory 
RelMetadataProvider 
• RelMdColumnUniquensss 
• RelMdDistinctRowCount 
• RelMdSelectivity

SQL parser
SqlNode 
SqlParser 
SqlValidator

Transformation rules

RelOptRule 
• MergeFilterRule 
• PushAggregateThroughUnionRule  
• 100+ more  
Global transformations 
• Unification (materialized view) 
• Column trimming 
• De-correlation 
• Join ordering

Relational algebra
RelNode (operator) 
• Scan 
• Filter 
• Project 
• Union 
• Aggregate 
• … 
RelDataType (type) 
RexNode (expression) 
RelTrait (physical property) 
• RelConvention (calling-convention) 
• RelCollation (sort-order) 
• RelDistribution (partitions) JDBC driver

Metadata
Schema 
Table 
Function 
• TableFunction 
• TableMacro 
Lattice
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Data independence
A core principle of data management 
Data independence is a contract: 

• Applications do not make assumptions about the location or organization of data 
• The DBMS chooses the most efficient access path 

Requires: 
• Declarative query language 
• Query planner 

Allows: 
• The DBMS (or administrator) can re-organize the data without breaking the 

application 
• Redundant copies of the data (indexes, materialized views, replicas) 
• Novel algorithms 
• Novel data formats and organizations (e.g. b-tree, r-tree, column store)
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Disk

Hadoop

B2B1

B3 B4

Memory

CPU

Name 
node 
(HDFS)

Application 
master 
(YARN)

Zookeeper
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Commodity hardware 
Storage, memory and CPU all scale as you add nodes 
N replicas of each block (typically 3) give redundancy & scheduling flexibility

Disk

Hadoop scales

B2B1

B3 B4

Memory

CPU

Disk

B3B1

B5

Memory

CPU

Disk

B4B1

B5

Memory

CPU

Disk

B3B2

B6

Memory

CPU

Disk

B5B2

B6

Memory

CPU

B3
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Data flow among operators running on nodes 
Nodes are assigned to work on blocks that have a replica locally 
Memory is used for file blocks and for scratch space (e.g. hash tables)

Disk

Hadoop query execution

B2B1

B3 B4

Memory

CPU

Disk

B3B1

B5

Memory

CPU

Disk

B4B1

B5

Memory

CPU

Disk

B3B2

B6

Memory

CPU

Disk

B5B2

B6

Memory

CPU

B3

B1 B3 B4 B21 1 11
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Data independence and Hadoop
Hadoop is very flexible when data is loaded 

That flexibility has made it hard for the system to optimize access 

Materialized views are an opportunity to “crack” the data, and create copies in 
other formats
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Calcite: Lattices and tiles
Materialized view 
A table whose contents are guaranteed to be the same as 

executing a given query. 
Lattice 
Recommends, builds, and recognizes summary 

materialized views (tiles) based on a star schema. 
A query defines the tables and many:1 relationships in the 

star schema. 

Tile 
A summary materialized view that belongs to a lattice. 
A tile may or may not be materialized. 
Materialization methods: 
• Declare in lattice 
• Generate via recommender algorithm 
• Created in response to query 

CREATE MATERIALIZED VIEW t AS 
SELECT * FROM Emps 
WHERE deptno = 10;

CREATE LATTICE star AS 
SELECT * 
FROM Sales AS s 
JOIN Products AS p ON … 
JOIN ProductClasses AS pc ON … 
JOIN Customers AS c ON … 
JOIN Time AS t ON …;

CREATE MATERIALIZED VIEW zg IN star 
SELECT gender, zipcode, 
  COUNT(*), SUM(unit_sales) 
FROM star 
GROUP BY gender, zipcode;

(FAKE SYNTAX)
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Query: SELECT x, SUM(y) FROM t GROUP BY x

In-memory 
materialized 
queries

Tables  
on disk

Tiled, in-memory materializations

Where we’re going… algebraic cache: http://hortonworks.com/blog/dmmq/ 
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Summary

1. Relational algebra allows us to reason about queries, and 
is the foundation of query planning 

2. Hadoop is deconstructing the DBMS, and enabling new 
languages, engines and data formats 

3. Data independence is more important than ever 
4. Apache Calcite - an implementation of relational algebra
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Thank you!

@julianhyde 
http://calcite.incubator.apache.org

Apache  
Calcite
Apache 
Calcite

http://calcite.incubator.apache.org

