
© Hortonworks Inc. 2015

Why you care about 
relational algebra
(even though you didn’t know it)

Julian Hyde
Enterprise Data World

Washington, DC
April 2nd, 2015

© Hortonworks Inc. 2015

About me

Apache 
Calcite
Apache
Calcite

© Hortonworks Inc. 2015

Why you should care about relational algebra
Why should you care?

• It is old
• It is as useful as ever
• Exposed in new products such as Hadoop
• New challenges

Agenda
• Is Hadoop a revolution for the database world?
• What is relational algebra?
• Examples of algebra in action
• Introducing Apache Calcite
• Adding data independence to Hadoop via materialized views

© Hortonworks Inc. 2015

Hadoop

Old world, new world

RDBMS

• Security
• Metadata
• SQL
• Query planning
• Data independence

• Scale
• Late schema
• Choice of front-end
• Choice of engines
• Workload: batch, interactive,

streaming, ML, graph, …

© Hortonworks Inc. 2015

Many front ends, many engines

SQL

Planning

Execution  
engine

Planning

User code

Map  
Reduce Tez User code

in Yarn
Spark MongoDB

Hadoop

External  
SQL

SQL Spark Storm Cascading HBase Graph

© Hortonworks Inc. 2015

Analogy: LLVM

Lessons from the compiler  
community:
• Writing a front end is hard
• Writing a back end is hard
• Writing an optimizer is really hard
• Most of the logic in the optimizer is independent of

front end and back end
• E.g. register assignment

• The optimizer is a collection of separate algorithms
• Common language between algorithms

© Hortonworks Inc. 2015

Relational algebra
SELECT d.name, COUNT(*) AS c
FROM Emps AS e
 JOIN Depts AS d ON e.deptno = d.deptno
WHERE e.age < 30
GROUP BY d.deptno
HAVING COUNT(*) > 5
ORDER BY c DESC

Scan [Emps] Scan [Depts]

Join [e.deptno 
 = d.deptno]

Filter [e.age < 30]

Aggregate [deptno, COUNT(*) AS c]

Filter [c > 5]

Project [name, c]

Sort [c DESC]

(Column names are simplified. They would usually 
be ordinals, e.g. $0 is the first column of the left input.)

© Hortonworks Inc. 2015

Relational algebra - Union and sub-query
SELECT * FROM ( 
 SELECT zipcode, state  
 FROM Emps  
 UNION ALL  
 SELECT zipcode, state  
 FROM Customers) 
WHERE state IN (‘CA’, ‘TX’)

Scan [Emps] Scan [Customers]

Union [all]

Project [zipcode, state] Project [zipcode, state]

Filter [state IN (‘CA’, ‘TX’)]

© Hortonworks Inc. 2015

Relational algebra - Insert and Values
INSERT INTO Facts  
VALUES (‘Meaning of life’, 42),  
 (‘Clever as clever’, 6)

Insert [Facts]

Values [[‘Meaning of life’, 42],
 [‘Clever as clever’, 6]]

© Hortonworks Inc. 2015

Relational algebra - Strict versus Pragmatic
“Strict” relational algebra
Introduced by E.F. Codd in “A relational

model for large shared data banks” [1970]
Goal is mathematical elegance (ability to

prove theorems)
Greek symbols: σ, π, ρ, U,
Relations cannot contain duplicates
Relations are not sorted
Column values are scalars
Only logical operators

Pragmatic relational algebra
Goal is to optimize queries, allow real-

world data models, extensibility
Elegance still important
Verbs: Project, Filter, Union, Join
Relations may contain duplicates
Relations may be sorted

• But Sort is the only logical operator
that guarantees order

Null values have 3-value semantics, as in
SQL

Physical operators (e.g. HashJoin,
MergeJoin)

Physical properties (sort, distribution)

© Hortonworks Inc. 2015

Algebraic transformations
(R filter c1) filter c2 → R filter (c1 and c2)

(R1 union R2) join R3 on c → (R1 join R3 on C) union (R2 join R3 on c)

• Compare distributive law of arithmetic: (x + y) * z → (x * z) + (y * z)

(R1 join R2 on c) filter c2 → (R1 filter c2) join R2 on c

(R1 join R2 on c) → (R2 join R2 on c) project [R1.*, R2.*]

(R1 join R2 on c) join R3 on c2 → R1 join (R2 join R3 on c2) on c

Many, many others…

(provided C2 only depends on
columns in E, and join is inner)

(provided c, c2 have the
necessary columns)

© Hortonworks Inc. 2015

Query using a view
SELECT deptno, min(salary)  
FROM Managers  
WHERE age >= 50  
GROUP BY deptno

CREATE VIEW Managers AS 
SELECT *  
FROM Emps  
WHERE EXISTS ( 
 SELECT *  
 FROM Emps AS underling  
 WHERE underling.manager = emp.id) Scan [Emps]

Join [$0, $5]

Project [$0, $1, $2, $3]

Filter [age >= 50]

Aggregate [deptno, min(salary)]

Scan [Managers]

Aggregate [manager]

Scan [Emps]

© Hortonworks Inc. 2015

After view expansion
SELECT deptno, min(salary)  
FROM Managers  
WHERE age >= 50  
GROUP BY deptno

CREATE VIEW Managers AS 
SELECT *  
FROM Emps  
WHERE EXISTS ( 
 SELECT *  
 FROM Emps AS underling  
 WHERE underling.manager = emp.id)

Scan [Emps] Aggregate [manager]

Join [$0, $5]

Project [$0, $1, $2, $3]

Filter [age >= 50]

Aggregate [deptno, min(salary)]

Scan [Emps]

© Hortonworks Inc. 2015

After pushing down filter
SELECT deptno, min(salary)  
FROM Managers  
WHERE age >= 50  
GROUP BY deptno

CREATE VIEW Managers AS 
SELECT *  
FROM Emps  
WHERE EXISTS ( 
 SELECT *  
 FROM Emps AS underling  
 WHERE underling.manager = emp.id)

Scan [Emps]

Scan [Emps]

Join [$0, $5]

Project [$0, $1, $2, $3]

Filter [age >= 50]

Aggregate [deptno, min(salary)]

© Hortonworks Inc. 2015

Materialized view
CREATE MATERIALIZED VIEW EmpSummary AS  
SELECT deptno,  
 gender,  
 COUNT(*) AS c, 
 SUM(sal) AS s  
FROM Emps  
GROUP BY deptno, gender

SELECT COUNT(*)  
FROM Emps  
WHERE deptno = 10  
AND gender = ‘M’

Scan [Emps]

Aggregate [deptno, gender, 
 COUNT(*), SUM(sal)]Scan [EmpSummary] =

Scan [Emps]

Filter [deptno = 10 AND gender = ‘M’]

Aggregate [COUNT(*)]

© Hortonworks Inc. 2015

Materialized view, step 2: Rewrite query to match
CREATE MATERIALIZED VIEW EmpSummary AS  
SELECT deptno,  
 gender,  
 COUNT(*) AS c, 
 SUM(sal) AS s  
FROM Emps  
GROUP BY deptno, gender

SELECT COUNT(*)  
FROM Emps  
WHERE deptno = 10  
AND gender = ‘M’

Scan [Emps]

Aggregate [deptno, gender, 
 COUNT(*), SUM(sal)]Scan [EmpSummary] =

Scan [Emps]

Filter [deptno = 10 AND gender = ‘M’]

Aggregate [deptno, gender, 
 COUNT(*) AS c, SUM(sal) AS s]

Project [c]

© Hortonworks Inc. 2015

Materialized view, step 3: Substitute table
CREATE MATERIALIZED VIEW EmpSummary AS  
SELECT deptno,  
 gender,  
 COUNT(*) AS c, 
 SUM(sal) AS s  
FROM Emps  
GROUP BY deptno, gender

SELECT COUNT(*)  
FROM Emps  
WHERE deptno = 10  
AND gender = ‘M’

Scan [Emps]

Aggregate [deptno, gender, 
 COUNT(*), SUM(sal)]Scan [EmpSummary] =

Filter [deptno = 10 AND gender = ‘M’]

Project [c]

Scan [EmpSummary]

© Hortonworks Inc. 2015

Streaming
SELECT STREAM DISTINCT productName, 
 floor(rowtime TO HOUR) AS h  
FROM Orders

Delta
Converts a table to a stream
Each time a row is inserted into the table, a
record appears in the stream

Chi
Converts a stream into a table
Often we can safely narrow the table down to a
small time window

Chi

Aggregate [productName, h]

Scan [Orders]

Project [productName, 
 floor(rowtime TO HOUR) AS h]

Delta

© Hortonworks Inc. 2015

Streaming - efficient implementation
SELECT STREAM DISTINCT productName, 
 floor(rowtime TO HOUR) AS h  
FROM Orders

Can create efficient implementation:
• Input is sorted by timestamp
• Only need to aggregate an hour at a time
• Output timestamp tracks input timestamp
• Therefore it is safe to cancel out the Chi

and Delta operators  

StreamingAggregate [productName, h]

Scan [Orders]

Project [productName, 
 floor(rowtime TO HOUR) AS h]

© Hortonworks Inc. 2015

Algebraic transformations - streaming
delta(filter(c, R)) → filter(delta(c, R))

delta(project(e1, …, en, R) → project(delta(e1, …, en, R))

delta(union(R1, R2)) → union(delta(R1), delta(R2))

delta(join(R1, R2, c)) → union(join(R1, delta(R2), c),  
 join(delta(R1), R2), c)

Delta behaves like “differentiate” in differential calculus,
Chi like “integrate”.

(f + g)’ = f’ + g’

(f . g)’ = f.g’ + f’.g

© Hortonworks Inc. 2015

Apache Calcite
Apache 
Calcite
Apache
Calcite

© Hortonworks Inc. 2015

Apache Calcite

Apache incubator project since May, 2014
• Originally named Optiq

Query planning framework
• Relational algebra, rewrite rules, cost model
• Extensible
Packaging
• Library (JDBC server optional)
• Open source
• Community-authored rules, adapters

Adoption
• Embedded: Lingual (SQL interface to Cascading), Apache Drill, Apache Hive, Kylin OLAP,

Apache Phoenix, Apache Samza
• Adapters: Splunk, Spark, MongoDB, JDBC, CSV, JSON, Web tables, In-memory data

© Hortonworks Inc. 2015

Conventional DB architecture

© Hortonworks Inc. 2015

Calcite architecture

© Hortonworks Inc. 2015

Calcite – APIs and SPIs

Cost, statistics
RelOptCost
RelOptCostFactory
RelMetadataProvider
• RelMdColumnUniquensss
• RelMdDistinctRowCount
• RelMdSelectivity

SQL parser
SqlNode 
SqlParser 
SqlValidator

Transformation rules

RelOptRule
• MergeFilterRule
• PushAggregateThroughUnionRule
• 100+ more
Global transformations
• Unification (materialized view)
• Column trimming
• De-correlation
• Join ordering

Relational algebra
RelNode (operator)
• Scan
• Filter
• Project
• Union
• Aggregate
• …
RelDataType (type)
RexNode (expression)
RelTrait (physical property)
• RelConvention (calling-convention)
• RelCollation (sort-order)
• RelDistribution (partitions) JDBC driver

Metadata
Schema
Table
Function
• TableFunction
• TableMacro
Lattice

© Hortonworks Inc. 2015

Data independence
A core principle of data management
Data independence is a contract:

• Applications do not make assumptions about the location or organization of data
• The DBMS chooses the most efficient access path

Requires:
• Declarative query language
• Query planner

Allows:
• The DBMS (or administrator) can re-organize the data without breaking the

application
• Redundant copies of the data (indexes, materialized views, replicas)
• Novel algorithms
• Novel data formats and organizations (e.g. b-tree, r-tree, column store)

© Hortonworks Inc. 2015

Disk

Hadoop

B2B1

B3 B4

Memory

CPU

Name
node
(HDFS)

Application
master
(YARN)

Zookeeper

© Hortonworks Inc. 2015

Commodity hardware
Storage, memory and CPU all scale as you add nodes
N replicas of each block (typically 3) give redundancy & scheduling flexibility

Disk

Hadoop scales

B2B1

B3 B4

Memory

CPU

Disk

B3B1

B5

Memory

CPU

Disk

B4B1

B5

Memory

CPU

Disk

B3B2

B6

Memory

CPU

Disk

B5B2

B6

Memory

CPU

B3

© Hortonworks Inc. 2015

Data flow among operators running on nodes
Nodes are assigned to work on blocks that have a replica locally
Memory is used for file blocks and for scratch space (e.g. hash tables)

Disk

Hadoop query execution

B2B1

B3 B4

Memory

CPU

Disk

B3B1

B5

Memory

CPU

Disk

B4B1

B5

Memory

CPU

Disk

B3B2

B6

Memory

CPU

Disk

B5B2

B6

Memory

CPU

B3

B1 B3 B4 B21 1 11

© Hortonworks Inc. 2015

Data independence and Hadoop
Hadoop is very flexible when data is loaded

That flexibility has made it hard for the system to optimize access

Materialized views are an opportunity to “crack” the data, and create copies in
other formats

Page ‹#› © Hortonworks Inc. 2014

Calcite: Lattices and tiles
Materialized view
A table whose contents are guaranteed to be the same as

executing a given query.
Lattice
Recommends, builds, and recognizes summary

materialized views (tiles) based on a star schema.
A query defines the tables and many:1 relationships in the

star schema.

Tile
A summary materialized view that belongs to a lattice.
A tile may or may not be materialized.
Materialization methods:
• Declare in lattice
• Generate via recommender algorithm
• Created in response to query

CREATE MATERIALIZED VIEW t AS
SELECT * FROM Emps
WHERE deptno = 10;

CREATE LATTICE star AS
SELECT *
FROM Sales AS s
JOIN Products AS p ON …
JOIN ProductClasses AS pc ON …
JOIN Customers AS c ON …
JOIN Time AS t ON …;

CREATE MATERIALIZED VIEW zg IN star 
SELECT gender, zipcode,
 COUNT(*), SUM(unit_sales) 
FROM star 
GROUP BY gender, zipcode;

(FAKE SYNTAX)

© Hortonworks Inc. 2015

Query: SELECT x, SUM(y) FROM t GROUP BY x

In-memory 
materialized
queries

Tables  
on disk

Tiled, in-memory materializations

Where we’re going… algebraic cache: http://hortonworks.com/blog/dmmq/

© Hortonworks Inc. 2015

Summary

1. Relational algebra allows us to reason about queries, and
is the foundation of query planning

2. Hadoop is deconstructing the DBMS, and enabling new
languages, engines and data formats

3. Data independence is more important than ever
4. Apache Calcite - an implementation of relational algebra

© Hortonworks Inc. 2015

Thank you!

@julianhyde
http://calcite.incubator.apache.org

Apache  
Calcite
Apache
Calcite

http://calcite.incubator.apache.org

