
Apache Calcite: A Foundational
Framework for Optimized Query

Processing Over Heterogeneous Data
Sources

Edmon Begoli, Jesús Camacho-Rodrıǵuez, Julian Hyde,
Michael J. Mior, Daniel Lemire

2018 SIGMOD, Houston, Texas, USA

Outline
Background and History

Architecture

Adapter Design

Optimizer and Planner

Adoption

Uses in Research and Scholastic Potential

Roadmap and Future Work

What is Calcite?
Apache Calcite is an extensible framework for
building data management systems.

It is an open source project governed by the
Apache Software Foundation, is written in
Java, and is used by dozens of projects and
companies, and several research projects.

Origins and Design Principles

Origins 2004 – LucidEra and SQLstream were each building SQL systems;
2012 – Pare down code base, enter Apache as incubator project

Problem Building a high-quality database requires ~ 20 person years (effort)
and 5 years (elapsed)

Solution Create an open source framework that a community can contribute
to, and use to build their own DBMSs

Design
principles

Flexible → Relational algebra
Extensible/composable → Volcano-style planner
Easy to contribute to → Java, FP style

Alternatives PostgreSQL, Apache Spark, AsterixDB

Architecture

Core – Operator expressions
(relational algebra) and planner
(based on Volcano/Cascades)

External – Data storage, algorithms
and catalog

Optional – SQL parser, JDBC &
ODBC drivers

Extensible – Planner rewrite rules,
statistics, cost model, algebra, UDFs

Adapter Design
A pattern that defines how
Calcite incorporates diverse
data sources for general
access.

Model – specification of the
physical properties of the data
source.

Schema – definition of the data
(format and layouts) found in
the model.

Represent query as
relational algebra

MySQL

Splunk

join

Key: productId

group

Key: productName
Agg: count

filter

Condition:
action = 'purchase'

sort

Key: c desc

scan

scan

Table: products

Table: splunk

select p.productName, count(*) as c
from splunk.splunk as s
 join mysql.products as p
 on s.productId = p.productId
where s.action = 'purchase'
group by p.productName
order by c desc

Optimize query by
applying transformation
rules

MySQL

Splunk

join

Key: productId

group

Key: productName
Agg: count

filter

Condition:
action = 'purchase'

sort

Key: c desc

scan

scan

Table: splunk

Table: products

select p.productName, count(*) as c
from splunk.splunk as s
 join mysql.products as p
 on s.productId = p.productId
where s.action = 'purchase'
group by p.productName
order by c desc

1. Plans start
as logical
nodes.

3. Fire rules to
propagate conventions
to other nodes.

2. Assign each
Scan its table’s
native
convention.

4. The best plan may
use an engine not tied
to any native format.

To implement, generate
a program that calls out
to query1 and query2.

Join

Filter Scan

ScanScan

Join

Conventions
Join

Filter Scan

ScanScan

Join

Scan

ScanScan

Join

Filter

Join

Join

Filter Scan

ScanScan

Join

Conventions & adapters

Scan Scan

Join

Filter

Join

Scan

Convention provides a uniform
representation for hybrid queries

Like ordering and distribution,
convention is a physical property of
nodes

Adapter =
 schema factory (lists tables)
 + convention
 + rules to convert nodes to convention

Stream ~= append-only table

Streaming queries return deltas

Stream-table duality: Orders is used as
both stream and table

Our contributions:

➢ Popularize streaming SQL
➢ SQL parser / validator / rules
➢ Reference implementation & TCK

select stream *
from Orders as o
where units > (
 select avg(units)
 from Orders as h
 where h.productId = o.productId
 and h.rowtime >
 o.rowtime - interval ‘1’ year)

“Show me real-time orders whose size is larger
than the average for that product over the
preceding year”

Streaming SQL

Uses and Adoption

Uses in Research
● Polystore research – use as lightweight

heterogeneous data processing platform
● Optimization and query profiling –

general performance, and optimizer
research

● Reasoning over Streams, Graphs –
under consideration

● Open-source, production grade learning
and research platform

Future Work and Roadmap
● Support its use as a standalone engine – DDL, materialized views,

indexes and constraints.
● Improvements to the design and extensibility of the planner

(modularity, pluggability)
● Incorporation of new parametric approaches into the design of the

optimizer.
● Support for an extended set of SQL commands, functions, and

utilities, including full compliance with OpenGIS (spatial).
● New adapters for non-relational data sources such as array

databases.
● Improvements to performance profiling and instrumentation.

Thank you! Questions?

@ApacheCalcite

https://calcite.apache.org

https://arxiv.org/abs/1802.10233

Extra slides

Calcite framework

Cost, statistics
RelOptCost
RelOptCostFactory
RelMetadataProvider
• RelMdColumnUniquensss
• RelMdDistinctRowCount
• RelMdSelectivity

SQL parser
SqlNode
SqlParser
SqlValidator

Transformation rules
RelOptRule
• FilterMergeRule
• AggregateUnionTransposeRule
• 100+ more
Global transformations
• Unification (materialized view)
• Column trimming
• De-correlation

Relational algebra
RelNode (operator)
• TableScan
• Filter
• Project
• Union
• Aggregate
• …
RelDataType (type)
RexNode (expression)
RelTrait (physical property)
• RelConvention (calling-convention)
• RelCollation (sortedness)
• RelDistribution (partitioning)
RelBuilder

JDBC driver

Metadata
Schema
Table
Function
• TableFunction
• TableMacro
Lattice

Avatica

● Database connectivity
stack

● Self-contained sub-project
of Calcite

● Fast, open, stable
● Protobuf or JSON over

HTTP
● Powers Phoenix Query

Server

Lattice (optimized) () 1

(z, s, g, y,
m) 912k

(s, g, y,
m) 6k

(z) 43k (s) 50 (g) 2 (y) 5 (m) 12

(z, g, y,
m) 909k

(z, s, y,
m) 831k

raw 1m

(z, s, g,
m) 644k

(z, s, g,
y) 392k

(y, m)
60

(z, s)
43.4k

(z, s, g)
83.6k

(g, y) 10

(g, y, m)
120

(g, m)
24

Key

z zipcode (43k)
s state (50)
g gender (2)
y year (5)
m month (12)

Aggregation and windows on
streams
GROUP BY aggregates multiple rows into
sub-totals
➢ In regular GROUP BY each row contributes to

exactly one sub-total
➢ In multi-GROUP BY (e.g. HOP, GROUPING

SETS) a row can contribute to more than one
sub-total

Window functions (OVER) leave the number of
rows unchanged, but compute extra expressions
for each row (based on neighboring rows)

Multi
GROUP BY

Window
functions

GROUP BY

Tumbling, hopping & session windows in SQL

Tumbling window

Hopping window

Session window

select stream … from Orders
group by floor(rowtime to hour)

select stream … from Orders
group by tumble(rowtime, interval ‘1’ hour)

select stream … from Orders
group by hop(rowtime, interval ‘1’ hour,
 interval ‘2’ hour)

select stream … from Orders
group by session(rowtime, interval ‘1’ hour)

Controlling when data is emitted

Early emission is the defining
characteristic of a streaming query.

The emit clause is a SQL extension
inspired by Apache Beam’s “trigger”
notion. (Still experimental… and
evolving.)

A relational (non-streaming) query is
just a query with the most conservative
possible emission strategy.

select stream productId,
 count(*) as c
from Orders
group by productId,
 floor(rowtime to hour)
emit at watermark,
 early interval ‘2’ minute,
 late limit 1;

select *
from Orders
emit when complete;

