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Spatial Query on Vanilla Databases

Spatial and GIS applications have traditionally required specialized databases, or at least specialized data structures like 
r-trees. Unfortunately this means that hybrid applications such as spatial analytics are not well served, and many people 
are unaware of the power of spatial queries because their favorite database does not support them.

In this talk, we describe how Apache Calcite enables efficient spatial queries using generic data structures such as 
HBase’s key-sorted tables, using techniques like Hilbert space-filling curves and materialized views. Calcite implements 
much of the OpenGIS function set and recognizes query patterns that can be rewritten to use particular spatial indexes. 
Calcite is bringing spatial query to the masses!
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Apache Calcite

Apache top-level project since 2015

Query planning framework used in many 
projects and products

Also works standalone: embedded federated 
query engine with SQL / JDBC front end

Apache community development model

https://calcite.apache.org 
https://github.com/apache/calcite 

https://calcite.apache.org
https://github.com/apache/calcite


SELECT d.name, COUNT(*) AS c
FROM Emps AS e
JOIN Depts AS d USING (deptno)
WHERE e.age < 40
GROUP BY d.deptno
HAVING COUNT(*) > 5
ORDER BY c DESC

Relational algebra

Based on set theory, plus operators: 
Project, Filter, Aggregate, Union, Join, 
Sort

Requires: declarative language (SQL), 
query planner

Original goal: data independence

Enables: query optimization, new 
algorithms and data structures

Scan [Emps] Scan [Depts]

Join [e.deptno = d.deptno]

Filter [e.age < 30]

Aggregate [deptno, COUNT(*) AS c]

Filter [c > 5]

Project [name, c]

Sort [c DESC]



SELECT d.name, COUNT(*) AS c
FROM (SELECT * FROM Emps 
      WHERE e.age < 40) AS e
JOIN Depts AS d USING (deptno)
GROUP BY d.deptno
HAVING COUNT(*) > 5
ORDER BY c DESC

Algebraic rewrite

Optimize by applying rewrite rules that 
preserve semantics

Hopefully the result is less expensive; 
but it’s OK if it’s not (planner keeps 
“before” and “after”)

Planner uses dynamic programming, 
seeking the lowest total cost

Scan [Emps] Scan [Depts]

Join [e.deptno = d.deptno]

Filter [e.age < 30]

Aggregate [deptno, COUNT(*) AS c]

Filter [c > 5]

Project [name, c]

Sort [c DESC]



Relational Spatial



A spatial query

Find all restaurants within 1.5 distance units of 
my location (6, 7)

restaurant x y

Zachary’s pizza 3 1

King Yen 7 7

Filippo’s 7 4

Station burger 5 6

•

•

•

•
Zachary’s 
pizza

Filippo’s

King 
Yen

Station 
burger



A spatial query

Find all restaurants within 1.5 distance units of 
my location (6, 7)

Using OpenGIS SQL extensions:

restaurant x y

Zachary’s pizza 3 1

King Yen 7 7

Filippo’s 7 4

Station burger 5 6

SELECT *
FROM Restaurants AS r
WHERE ST_Distance(
  ST_MakePoint(r.x, r.y),
  ST_MakePoint(6, 7)) < 1.5

•

•

•

•
Zachary’s 
pizza

Filippo’s

King 
Yen

Station 
burger



Simple implementation

Using ESRI’s geometry-api-java library, 
almost all ST_ functions were easy to 
implement in Calcite.

Slow – one row at a time.

SELECT *
FROM Restaurants AS r
WHERE ST_Distance(
  ST_MakePoint(r.x, r.y),
  ST_MakePoint(6, 7)) < 1.5

package org.apache.calcite.runtime;

import com.esri.core.geometry.*;

/** Simple implementations of built-in geospatial functions. */
public class GeoFunctions {
  /** Returns the distance between g1 and g2. */
  public static double ST_Distance(Geom g1, Geom g2) {
    return GeometryEngine.distance(g1.g(), g2.g(), g1.sr());
  }

  /**  Constructs a 2D point from coordinates. */
  public static Geom ST_MakePoint(double x, double y) {
    final Geometry g = new Point(x, y);
    return new SimpleGeom(g);
  }

  /** Geometry. It may or may not have a spatial reference
  * associated with it. */
  public interface Geom {
    Geometry g();
    SpatialReference sr();
    Geom transform(int srid);
    Geom wrap(Geometry g);
  }

  static class SimpleGeom implements Geom { … }
}



Traditional DB indexing 
techniques don’t work

Sort

Hash

CREATE /* b-tree */ INDEX
  I_Restaurants
ON Restaurants(x, y);

CREATE TABLE Restaurants(
    restaurant VARCHAR(20),
    x INTEGER,
    y INTEGER)
PARTITION BY (MOD(x + 5279 * y, 1024));

•

•

•

•
A scan over a two-dimensional index only 

has locality in one dimension



A “vanilla database”

Master

Region 
server

[A - Gh]

Region 
server

[Gi - Ts]

Region 
server
[Tr - Z]



Spatial data structures and algorithms

The challenge: Reduce dimensionality while preserving locality

● Reduce dimensionality  –  We want to warp the information space so that 
we can access on one composite attribute rather than several

● Preserve locality  –  If two items are close in 2D, we want them to be close 
in the information space (and in the same cache line or disk block)

Two main approaches to spatial data structures:

● Data-oriented
● Space-oriented









R-tree (a data-oriented structure)



R-tree (split vertically into 2)



R-tree (split horizontally into 4)



R-tree (split vertically into 8)



R-tree (split horizontally into 16)



R-tree (split vertically into 32)



Grid (a space-oriented structure)



Grid (a space-oriented structure)



Spatial query

Find all restaurants within 1.5 distance units of 
where I am:

restaurant x y

Zachary’s pizza 3 1

King Yen 7 7

Filippo’s 7 4

Station burger 5 6

SELECT *
FROM Restaurants AS r
WHERE ST_Distance(
  ST_MakePoint(r.x, r.y),
  ST_MakePoint(6, 7)) < 1.5

•

•

•

•
Zachary’s 
pizza

Filippo’s

King 
Yen

Station 
burger



Hilbert space-filling curve

● A space-filling curve invented by mathematician David Hilbert
● Every (x, y) point has a unique position on the curve
● Points near to each other typically have Hilbert indexes close together 



•
•

•

•

Add restriction based on h, a restaurant’s distance 
along the Hilbert curve

Must keep original restriction due to false positives

Using Hilbert index

restaurant x y h

Zachary’s pizza 3 1 5

King Yen 7 7 41

Filippo’s 7 4 52

Station burger 5 6 36

Zachary’s 
pizza

Filippo’s

SELECT *
FROM Restaurants AS r
WHERE (r.h BETWEEN 35 AND 42
    OR r.h BETWEEN 46 AND 46)
AND ST_Distance(
  ST_MakePoint(r.x, r.y),
  ST_MakePoint(6, 7)) < 1.5

King 
Yen

Station 
burger



Telling the optimizer

1. Declare h as a generated column
2. Sort table by h

Planner can now convert spatial range 
queries into a range scan

Does not require specialized spatial 
index such as r-tree

Very efficient on a sorted table such as 
HBase

CREATE TABLE Restaurants (
  restaurant VARCHAR(20),
  x DOUBLE,
  y DOUBLE,
  h DOUBLE GENERATED ALWAYS AS
     ST_Hilbert(x, y) STORED)
SORT KEY (h);

restaurant x y h

Zachary’s pizza 3 1 5

Station burger 5 6 36

King Yen 7 7 41

Filippo’s 7 4 52



Algebraic rewrite

Scan [T]

Filter [ST_Distance(
    ST_Point(T.X, T.Y),
    ST_Point(x, y)) < d]

Scan [T]

Filter [(T.H BETWEEN h0 AND h1
  OR T.H BETWEEN h2 AND h3)
AND ST_Distance(
    ST_Point(T.X, T.Y),
    ST_Point(x, y)) < d]

Constraint: Table T has a 
column H such that:
    H = Hilbert(X, Y)

FilterHilbertRule

x, y, d, hi –  constants
T  –  table
T.X, T.Y, T.H  –  columns



Variations on a theme

Several ways to say the same thing using OpenGIS functions:
● ST_Distance(ST_Point(X, Y), ST_Point(x, y)) < d
● ST_Distance(ST_Point(x, y), ST_Point(X, Y)) < d
● ST_DWithin(ST_Point(x, y), ST_Point(X, Y), d)
● ST_Contains(ST_Buffer(ST_Point(x, y), d), ST_Point(X, Y))

Other patterns can use Hilbert functions:
● ST_DWithin(ST_MakeLine(ST_Point(x1, y1), ST_Point(x2, y2)),

   ST_Point(X, Y), d)
● ST_Contains(ST_PolyFromText('POLYGON((0 0,20 0,20 20,0 20,0 0))'),

   ST_Point(X, Y), d)



More spatial queries

What state am I in? (1-point-to-1-polygon)

Which states does Yellowstone NP intersect? 
(1-polygon-to-many-polygons)

Which US national park intersects with the most 
states? (many-polygons-to-many-polygons, 
followed by sort/limit)



More spatial queries

What state am I in? (point-to-polygon)

Which states does Yellowstone NP intersect? 
(polygon-to-polygon)

SELECT *
FROM States AS s
WHERE ST_Intersects(s.geometry,
  ST_MakePoint(6, 7))

SELECT *
FROM States AS s
WHERE ST_Intersects(s.geometry,
  ST_GeomFromText('LINESTRING(...)'))



Tile index
Idaho

Montana

Nevada Utah Colorado

Wyoming
We cannot use space-filling curves, because 
each region (state or park) is a set of points and 
not known as planning time.

Divide regions into a (coarse) set of tiles. They 
intersect only if some of their tiles intersect.



Tile index 6 7 8

3 4 5

0 1 2

Idaho

Montana

Nevada Utah Colorado

Wyoming
tileId state

0 Nevada

0 Utah

1 Utah

2 Colorado

2 Utah

3 Idaho

3 Nevada

3 Utah

4 Idaho

tileId state

4 Utah

4 Wyoming

5 Wyoming

6 Idaho

6 Montana

7 Montana

7 Wyoming

8 Montana

8 Wyoming



Aside: Materialized views
CREATE MATERIALIZED
  VIEW EmpSummary AS
SELECT deptno, COUNT(*) AS c
FROM Emp
GROUP BY deptno;

Scan [Emps]
Scan 
[EmpSummary]

Aggregate [deptno, count(*)]

empno name deptno

100 Fred 20

110 Barney 10

120 Wilma 30

130 Dino 10

deptno c

10 2

20 1

30 1

A materialized view is a table 
that is defined by a query

The planner knows about the 
mapping and can 
transparently rewrite queries 
to use it



Building the tile index

Use the ST_MakeGrid function to decompose each 
state into a series of tiles

Store the results in a table, sorted by tile id

A materialized view is a table that remembers how 
it was computed, so the planner can rewrite queries 
to use it

CREATE MATERIALIZED VIEW StateTiles AS
SELECT s.stateId, t.tileId
FROM States AS s,
  LATERAL TABLE(ST_MakeGrid(s.geometry, 4, 4)) AS t

6 7 8

3 4 5

0 1 2

Idaho

Montana

Nevada Utah Colorado

Wyoming



Point-to-polygon query

What state am I in? (point-to-polygon)

1. Divide the plane into tiles, and pre-compute 
the state-tile intersections

2. Use this ‘tile index’ to narrow list of states

SELECT s.*
FROM States AS s
WHERE s.stateId IN (SELECT stateId
  FROM StateTiles AS t
  WHERE t.tileId = 8)
AND ST_Intersects(s.geometry, ST_MakePoint(6, 7))

6 7 8

3 4 5

0 1 2

Idaho

Montana

Nevada Utah Colorado

Wyoming



Algebraic rewrite

Scan [S]

Filter [ST_Intersects(
    S.geometry,
    ST_Point(x, y)]

SemiJoin [S.stateId = T.stateId]

Constraint #1: There is a table “Tiles” defined by
  SELECT s.stateId, t.tileId FROM States AS s,
    LATERAL TABLE(ST_MakeGrid(s.geometry, x, y)) AS t

Constraint #2: stateId is primary key of S

TileSemiJoinRule

Filter [ST_Intersects(
    S.geometry,
    ST_Point(x, y)]

Scan [S] Filter [T.tileId = 8]

Scan [T]



Streaming + spatial

Example query: Every minute, emit the number of journeys that have intersected 
each city. (Some journeys intersect multiple cities.)

(Efficient implementation is left as an exercise to the reader. Probably involves 
splitting journeys into tiles, partitioning by tile hash-code, intersecting with cities 
in those tiles, then rolling up cities.)

SELECT STREAM c.name, COUNT(*)
FROM Journeys AS j
CROSS JOIN Cities AS c
  ON ST_Intersects(c.geometry, j.geometry)
GROUP BY c.name, FLOOR(j.rowtime TO HOUR)



Summary 

Traditional DB techniques (sort, hash) don’t work for 2-dimensional data

Spatial presents tough design choices:
● Space-oriented vs data-oriented algorithms
● General-purpose vs specialized data structures

Relational algebra unifies traditional and spatial:
● Use general-purpose structures
● Compose techniques (transactions, analytics, spatial, streaming)
● Must use space-oriented algorithms, because their dimensionality-reducing 

mapping is known at planning time



Thank you!  Questions?
@ApacheCalcite | @julianhyde | https://calcite.apache.org

Resources & credits

● [CALCITE-1616] Data profiler
● [CALCITE-1870] Lattice suggester
● [CALCITE-1861] Spatial indexes
● [CALCITE-1968] OpenGIS
● [CALCITE-1991] Generated columns
● Talk: “Data profiling with Apache Calcite” (Hadoop Summit, 2017)
● Talk: “SQL on everything, in memory” (Strata, 2014)
● Zhang, Qi, Stradling, Huang (2014). “Towards a Painless Index for Spatial 

Objects”
● Harinarayan, Rajaraman, Ullman (1996). “Implementing data cubes 

efficiently”
● https://www.census.gov/geo/maps-data/maps/2000popdistribution.html 
● https://www.nasa.gov/mission_pages/NPP/news/earth-at-night.html

https://www.census.gov/geo/maps-data/maps/2000popdistribution.html
https://www.nasa.gov/mission_pages/NPP/news/earth-at-night.html




Extra slides



Architecture

Conventional database Calcite



Planning queries

MySQL

Splunk

join

Key: productId

group

Key: productName
Agg: count

filter

Condition:
action = 'purchase'

sort

Key: c desc

scan

scan

Table: products

select p.productName, count(*) as c
from splunk.splunk as s
    join mysql.products as p
    on s.productId = p.productId
where s.action = 'purchase'
group by p.productName
order by c desc

Table: splunk



Optimized query

MySQL

Splunk

join

Key: productId

group

Key: productName
Agg: count

filter

Condition:
action = 'purchase'

sort

Key: c desc

scan

scan

Table: splunk

Table: products

select p.productName, count(*) as c
from splunk.splunk as s
    join mysql.products as p
    on s.productId = p.productId
where s.action = 'purchase'
group by p.productName
order by c desc



Calcite framework

Cost, statistics
RelOptCost
RelOptCostFactory
RelMetadataProvider
• RelMdColumnUniquensss
• RelMdDistinctRowCount
• RelMdSelectivity

SQL parser
SqlNode
SqlParser
SqlValidator

Transformation rules
RelOptRule
• FilterMergeRule
• AggregateUnionTransposeRule 
• 100+ more 
Global transformations
• Unification (materialized view)
• Column trimming
• De-correlation

Relational algebra
RelNode (operator)
• TableScan
• Filter
• Project
• Union
• Aggregate
• …
RelDataType (type)
RexNode (expression)
RelTrait (physical property)
• RelConvention (calling-convention)
• RelCollation (sortedness)
• RelDistribution (partitioning)
RelBuilder

JDBC driver

Metadata
Schema
Table
Function
• TableFunction
• TableMacro
Lattice


