
Streaming SQL
Julian Hyde

Hadoop Summit
San Jose, 2016/06/29

@julianhyde

SQL
Query planning
Query federation
OLAP
Streaming
Hadoop

Apache member
VP Apache Calcite
PMC Apache Arrow, Drill, Kylin

Thanks:
● Milinda Pathirage & Yi Pan (Apache Samza)
● Haohui Mai (Apache Storm)
● Fabian Hueske & Stephan Ewen (Apache Flink)

Data center

Streaming data sources
Sources:

● Devices / sensors
● Web servers
● (Micro-)services
● Databases (CDC)
● Synthetic streams
● Logging / tracing

Transports:

● Kafka
● Nifi

IoT
Devices

Services DatabaseWeb
server

How much is your data worth?

Recent data is more valuable
➢ ...if you act on it in time

Data moves from expensive
memory to cheaper disk as it cools

Old + new data is more valuable
still
➢ ...if we have a means to

combine them Time

Value of
data
($/GB)

Now1 hour
ago

1 day
ago

1 week
ago

1 year
ago

Hot data
Read often
Likely to be modified
High value
In memory

Cold data
Read rarely
Unlikely to be modified
Low value
On disk

Why query streams?

Stream - Database Duality:

● “Your database is just a cache of my stream”
● “Your stream is just change-capture of my database”

“Data is the new oil”

● Treating events/messages as data allows you to extract and refine them

Declarative approach to streaming applications

Why SQL? ● API to your database

● Ask for what you want,
system decides how to get it

● Query planner (optimizer)
converts logical queries to
physical plans

● Mathematically sound
language (relational algebra)

● For all data, not just data in a
database

● Opportunity for novel data
organizations & algorithms

● Standard
https://www.flickr.com/photos/pere/523019984/ (CC BY-NC-SA 2.0)

➢ API to your database

➢ Ask for what you want,
system decides how to get it

➢ Query planner (optimizer)
converts logical queries to
physical plans

➢ Mathematically sound
language (relational algebra)

➢ For all data, not just “flat”
data in a database

➢ Opportunity for novel data
organizations & algorithms

➢ Standard

Why SQL?

https://www.flickr.com/photos/pere/523019984/
https://www.flickr.com/photos/pere/523019984/

Data workloads

● Batch
● Transaction processing
● Single-record lookup
● Search
● Interactive / OLAP
● Exploration / profiling
● Continuous execution generating alerts (CEP)
● Continuous load

A variety of workloads, requiring specialized engines, but to the user it’s all “just
data”.

Building a streaming SQL standard via
consensus

Please! No more “SQL-like” languages!

Key technologies are open source (many are Apache projects)

Calcite is providing leadership: developing example queries, TCK

(Optional) Use Calcite’s framework to build a streaming SQL parser/planner for
your engine

Several projects are working with us: Samza, Storm, Flink. (Also non-streaming
SQL in Cassandra, Drill, Druid, Elasticsearch, Flink, Hive, Kylin, Phoenix.)

Simple queries

select *
from Products
where unitPrice < 20

select stream *
from Orders
where units > 1000

➢ Traditional (non-streaming)
➢ Products is a table
➢ Retrieves records from -∞ to now

➢ Streaming
➢ Orders is a stream
➢ Retrieves records from now to +∞
➢ Query never terminates

Stream-table duality

select *
from Orders
where units > 1000

➢ Yes, you can use a stream as
a table

➢ And you can use a table as a
stream

➢ Actually, Orders is both
➢ Use the stream keyword
➢ Where to actually find the

data? That’s up to the system

select stream *
from Orders
where units > 1000

Combining past and future

select stream *
from Orders as o
where units > (
 select avg(units)
 from Orders as h
 where h.productId = o.productId
 and h.rowtime > o.rowtime - interval ‘1’ year)

➢ Orders is used as both stream and table
➢ System determines where to find the records
➢ Query is invalid if records are not available

Semantics of streaming queries

The replay principle:

A streaming query produces the same result as the corresponding non-
streaming query would if given the same data in a table.

Output must not rely on implicit information (arrival order, arrival time,
processing time, or watermarks/punctuations)

(Some triggering schemes allow records to be emitted early and re-stated if
incorrect.)

Making progress

It’s not enough to get the right result. We
need to give the right result at the right
time.

Ways to make progress without
compromising safety:
➢ Monotonic columns (e.g. rowtime)

and expressions (e.g. floor
(rowtime to hour))

➢ Punctuations (aka watermarks)
➢ Or a combination of both

select stream productId,
 count(*) as c
from Orders
group by productId;

ERROR: Streaming aggregation
requires at least one
monotonic expression in
GROUP BY clause

8

75

4

10:00 10:15 10:30 11:00 11:15
Arrival
time

1
2

3 5

6

Event
time 8

10:00 10:15 10:30 11:00 11:15
Arrival
time

1
2

3

6

Event
time

4 Drop out-of-sequence
records

Emit 10:00-11:00 window
when first record after 11:
00 arrives

W 11:00

Emit 10:00-11:00
window when 11:
00 watermark
arrives

W 11:00’

7 New
watermark.
Re-state 10:
00-11:00
window

Policies for emitting results

Monotonic column Watermark

Aggregation and windows
on streams

GROUP BY aggregates multiple rows into sub-
totals

➢ In regular GROUP BY each row contributes
to exactly one sub-total

➢ In multi-GROUP BY (e.g. HOP, GROUPING
SETS) a row can contribute to more than
one sub-total

Window functions (OVER) leave the number of
rows unchanged, but compute extra
expressions for each row (based on
neighboring rows)

Multi
GROUP BY

Window
functions

GROUP BY

GROUP BY select stream productId,
 floor(rowtime to hour) as rowtime,
 sum(units) as u,
 count(*) as c
from Orders
group by productId,
 floor(rowtime to hour)

rowtime productId units

09:12 100 5

09:25 130 10

09:59 100 3

10:00 100 19

11:05 130 20

rowtime productId u c

09:00 100 8 2

09:00 130 10 1

10:00 100 19 1

not emitted yet; waiting
for a row >= 12:00

Window types

Tumbling
window

“Every T seconds, emit the total for T seconds”

Hopping
window

“Every T seconds, emit the total for T2 seconds”

Session
window

“Emit groups of records that are separated by gaps of no
more than T seconds”

Sliding
window

“Every record, emit the total for the surrounding T
seconds”
“Every record, emit the total for the surrounding R records”

Tumbling, hopping & session windows in SQL
Tumbling window

Hopping window

Session window

select stream … from Orders
group by floor(rowtime to hour)

select stream … from Orders
group by tumble(rowtime, interval ‘1’ hour)

select stream … from Orders
group by hop(rowtime, interval ‘1’ hour,
 interval ‘2’ hour)

select stream … from Orders
group by session(rowtime, interval ‘1’ hour)

Sliding windows in SQL
select stream
 sum(units) over w (partition by productId) as units1hp,
 sum(units) over w as units1h,
 rowtime, productId, units
from Orders
window w as (order by rowtime range interval ‘1’ hour preceding)

rowtime productId units

09:12 100 5

09:25 130 10

09:59 100 3

10:17 100 10

units1hp units1h rowtime productId units

5 5 09:12 100 5

10 15 09:25 130 10

8 18 09:59 100 3

23 13 10:17 100 10

The “pie chart” problem

➢ Task: Write a web page summarizing
orders over the last hour

➢ Problem: The Orders stream only
contains the current few records

➢ Solution: Materialize short-term history

Orders over the last hour

Beer
48%

Cheese
30%

Wine
22%

select productId, count(*)
from Orders
where rowtime > current_timestamp - interval ‘1’ hour
group by productId

Join stream to a table

Inputs are the Orders stream and the
Products table, output is a stream.

Acts as a “lookup”.

Execute by caching the table in a hash-
map (if table is not too large) and
stream order will be preserved.

select stream *
from Orders as o
join Products as p
 on o.productId = p.productId

Join stream to a changing table

Execution is more difficult if the
Products table is being changed
while the query executes.

To do things properly (e.g. to get the
same results when we re-play the
data), we’d need temporal database
semantics.

(Sometimes doing things properly is
too expensive.)

select stream *
from Orders as o
join Products as p
 on o.productId = p.productId
 and o.rowtime
 between p.startEffectiveDate
 and p.endEffectiveDate

Join stream to a stream

We can join streams if the join
condition forces them into “lock
step”, within a window (in this case,
1 hour).

Which stream to put input a hash
table? It depends on relative rates,
outer joins, and how we’d like the
output sorted.

select stream *
from Orders as o
join Shipments as s
on o.productId = p.productId
and s.rowtime
 between o.rowtime
 and o.rowtime + interval ‘1’ hour

Planning queries

MySQL

Splunk

join

Key: productId

group

Key: productName
Agg: count

filter

Condition:
action = 'purchase'

sort

Key: c desc

scan

scan

Table: products

select p.productName, count(*) as c
from splunk.splunk as s
 join mysql.products as p
 on s.productId = p.productId
where s.action = 'purchase'
group by p.productName
order by c desc

Table: splunk

Optimized query

MySQL

Splunk

join

Key: productId

group

Key: productName
Agg: count

filter

Condition:
action = 'purchase'

sort

Key: c desc

scan

scan

Table: splunk

Table: products

select p.productName, count(*) as c
from splunk.splunk as s
 join mysql.products as p
 on s.productId = p.productId
where s.action = 'purchase'
group by p.productName
order by c desc

Apache Calcite

Apache top-level project since October, 2015

Query planning framework
➢ Relational algebra, rewrite rules
➢ Cost model & statistics
➢ Federation via adapters
➢ Extensible

Packaging
➢ Library
➢ Optional SQL parser, JDBC server
➢ Community-authored rules, adapters

Embedded Adapters Streaming

Apache Drill
Apache Hive
Apache Kylin
Apache Phoenix*
Cascading
Lingual

Apache
Cassandra
Apache Spark
CSV
Druid*
Elasticsearch*
In-memory
JDBC
JSON
MongoDB
Splunk
Web tables

Apache Flink*
Apache Samza
Apache Storm

* Under development

Architecture

Conventional database Calcite

Relational algebra (plus streaming)

Core operators:
➢ Scan
➢ Filter
➢ Project
➢ Join
➢ Sort
➢ Aggregate
➢ Union
➢ Values

Streaming operators:
➢ Delta (converts relation to

stream)
➢ Chi (converts stream to

relation)

In SQL, the STREAM keyword
signifies Delta

Streaming algebra

➢ Filter
➢ Route
➢ Partition
➢ Round-robin
➢ Queue
➢ Aggregate
➢ Merge
➢ Store
➢ Replay
➢ Sort
➢ Lookup

Optimizing streaming queries

The usual relational transformations still apply: push filters and projects towards
sources, eliminate empty inputs, etc.

The transformations for delta are mostly simple:
➢ Delta(Filter(r, predicate)) → Filter(Delta(r), predicate)
➢ Delta(Project(r, e0, ...)) → Project(Delta(r), e0, …)
➢ Delta(Union(r0, r1), ALL) → Union(Delta(r0), Delta(r1))

But not always:
➢ Delta(Join(r0, r1, predicate)) → Union(Join(r0, Delta(r1)), Join(Delta(r0), r1)
➢ Delta(Scan(aTable)) → Empty

Sort

Sorting a streaming query is
valid as long as the system can
make progress.

Need a monotonic or
watermark-enabled expression
in the ORDER BY clause.

select stream productId,
 floor(rowtime to hour) as rowtime,
 sum(units) as u,
 count(*) as c
from Orders
group by productId,
 floor(rowtime to hour)
order by rowtime, c desc

Union

As in a typical database, we rewrite x union y
to select distinct * from (x union all y)

We can implement x union all y by simply combining the inputs in arrival
order but output is no longer monotonic. Monotonicity is too useful to squander!

To preserve monotonicity, we merge on the sort key (e.g. rowtime).

DML

➢ View & standing INSERT give same
results

➢ Useful for chained transforms
➢ But internals are different

insert into LargeOrders
select stream * from Orders
where units > 1000

create view LargeOrders as
select stream * from Orders
where units > 1000

upsert into OrdersSummary
select stream productId,
 count(*) over lastHour as c
from Orders
window lastHour as (
 partition by productId
 order by rowtime
 range interval ‘1’ hour preceding)

Use DML to maintain a “window”
(materialized stream history).

Summary: Streaming SQL features

Standard SQL over streams and relations

Streaming queries on relations, and relational queries on streams

Joins between stream-stream and stream-relation

Queries are valid if the system can get the data, with a reasonable latency
➢ Monotonic columns and punctuation are ways to achieve this

Views, materialized views and standing queries

Summary: The benefits of streaming SQL

Relational algebra covers needs of data-in-flight and data-at-rest applications

High-level language lets the system optimize quality of service (QoS) and data
location

Give DB tools and traditional users to access streaming data;
give message-oriented tools access to historic data

Combine real-time and historic data, and produce actionable results

Discussion continues at Apache Calcite, with contributions from Samza, Flink,
Storm and others. Please join in!

Thank you!

@julianhyde

@ApacheCalcite

calcite.apache.org

calcite.apache.org/docs/stream.html

Next talk (with @maryannxue) tomorrow at 12:20pm: “How We Re-
Engineered Phoenix with a Cost-Based Optimizer Based on Calcite”

http://calcite.apache.org
http://calcite.apache.org
http://calcite.apache.org/docs/stream.html
http://calcite.apache.org/docs/stream.html

